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INTRODUCTION

Businesses may utilize estimates of the mortality behavior of
property for a number of purposes, such as compubting income tax liability,
computing the rate base énd depreciation expenses for rate regulation, and
making management decisions relating to property. A usage of estimates
of mortality vehavior of property common to all of these purposes 1s in the
calculation of depreciation., Depreciation calculations generally require
an estimate of the probable average sérvice life of the property group,
or the probasble service life of the unit of property, and may require an
estimate of the probable retirement dispersion pattern of the property
group. The process of estimating the probable average service life or
probable service life and, if feasible, the probable retirement dispersion
pattern is called life estimation. An extensive knowledge of the past
mortality behavior of the same or a similar property forms a useful part
of the information for life estimation. The process of aggreéating and
analyzing historical data to 6btain this knowledge 1s called life

analysis.

Depreciation
W. C. Fitch, after an extensive study, formulated a general definition
of depreciation (6, p. 76):
Depreciation is the decrease in the number of available units of
service which a unit of property or group of property units can
be expected to render.

Three basic concepts of depreclation are frequently recognized: cost,

value, and physical condition (6, p. 10; 20, p. 175). Fitch states formal



definitions of cost-depreciation and value-depreciation (6, pp. 76-77):

Cost-depreciation is the decrease in the available units of
service expressed as a function of the cost of the property.

Value-depreciation is the change in the present worth of the
anticipated returns from the services to be rendered by a
property.

and summarizes all three basic concepts as (6, p. 10):
Cost-depreciation is the allocation of the purchase price over the
life of the equipment. Value-depreciation is the change in

anticipated benefits between two points in time. . . . physical
condition is an estimate of the percent of the tangible decay of

a property.

Bonbright mentions a fourth concept of depreciation (2, p. 185):

". . . the difference between the present worth of the old and
obsolescent asset. and. the pnesent worth of the hypothetical,
new and modern asset.”

The Federal and State govermments generally require the use of fthe
cost concept of depreciation for the purpose of estimating income tax
liability. Rate regulation agencies may utilize the cost or physical
condition or difference in value concepts and/or some combination(s) of
the four concepts of deprecigtion (10, p. 29). The pertinent constitu-
tion, statutes, and court decisions and the policies and decisions of the
particular regulatory agency may prescribe which concept(s) is appropriate
for the agency and the regulated business to use for regulatory.purposes.
Management may use whichever concept or combination of concepts they deem
appropriate for making a particular management decision. )

Depreciation calculations generally require, to a greater or lesser

extent, estimates of one or more of the mortality characteristics of the

property. The mortality characteristics specifically referred to are the

probable average service life of a property group, or the probable service



life of a unit of property, and the retirement or mortality dispersion
pattern of a property group. Winfrey defined probable service life and
probable average service life as (28, p. 12):-

The probable service life of an individual unit is that period of

time extending from its date of installation to the forecasted
date when it probable will be retired.

The probable average service life of a group of individual units
is the average of the probable service lives of the units of the

group.

The retirement dispersion pattern refers to the distribution of the ages
at retirement of the units comprising the propérty group. Probable
average service life can be calculated from the probable retirement
dispersion pattern; the reverse is not true.

Cost-depreciation requires estimates of one or more of the mortality
characteristics of the property. Value;depreciation does not directly
require estimates of any of the mortality characteristics of the property;
however, the process of estimating the anticipated benefits may utilize
estimates of one or more of the mortality characteristics., Physical con-
dition is estimated, generally, by an inspection of the property (20,

p. 178). Therefore, estimates of the mortality characteristics are not
directly involved in estimating depreciation in the sense of physical
condition. |

The word depreciation will be used in the sense of cosf-depreciation
in the remainder of this dissertation, unless otherwise noted, to simplify
the discussion.

The units of service which a property can be expectéd to render are

generally measured in terms of years of service or units of production.



Years of service are the most frequently used measure (4, p. 30) and are
used as the measure of service life in this dissertation.

Annual deprecilation is that portion of the cost of a property charged
as an expense (and, hence, charged against revenue) for a year. Accrued
depreciation as of a given date is the total depreciation of the unretired
property charged as an expense from the time of installation of the
Property until that date.

A more extensive treatment of depreciation may be found in Fitch (6),

Grant and Norton (8), and Marston, et al. (20).

Life Estimation

The process of life estimation can be divided into two parts. The
first part is the collection of relevant information. The second part is
the application of expert judgment to the information available to estimate
the mortality behavior of the property.

Relevant information includes, but is not necessarily limited to, the
results of a life analysis and analyses of economic trends, technological
progress, and policies and decisions of governmental bodies and agenciles
and of management. Whileltrends based on historical information can usually
be extended and extrapolated, a degree of uncertainty is present in any
atteupt to predicf the future; hence, expert judgment is an essential part
of life estimation.

While the author strongly recommends the development and use of

retirement data and survivor curves as the basis of estimating the

probable life of property units, he does not mean to infer that
expert judgment should be done away with in favor of pure statistical
treatment. ZEach indlvidual item, each group of items, and each

property or company must be dealt with in the light of its present
condition, its character and amount of service or production, and




its relation to the present and probable future economic trends,

art of manufacture, and management policies. Tables of probable

service lives, type survivor curves, and statistical methods are

simply means of recording past experience to use in predicting

what the future service might be (28, p. 9).

Iife Analysis

Life analysis is the process of aggregating and analyzing the his-
torical record of property for the purpose of obtaining information about
the mortality characteristics of the property. Life analysis and life
estimation are different processes since the former is concerne& with an
analysis of the past whereas the latter is generally concerned with a pre-
diction of the future. The end result of a life analysis is an estimate
of the probable average service life and, if possible, of the probhable
retirement dispersion pattern, as well as a knowledge of any discernable
trends in either, experienced or being experienced by the property under
study.

The plant property records ére a primary source of data for studying
the past mortality experience of property. A separate account may be kept
for each individual unit of property or two or more individual units may
be combined into a group and a record kept of the units as a group. A
group account in which the installations in a single year of a given
type(s) of property are recorded is called a vintage account and the group
of units is called a vintage group. A group account in which the installa~-
tions (of the same type or types of property) of successive years are

recorded is called a continuous or "open-end" account. The ensuing dis~

cussion is based on the life analysis of group property.



A complete property record would permit determination of at least
the following:

1. The amount of property installed each year (i.e., the amount

installed each year as a vintage group),

2. The age at retirement of the property alréady'rétired from each

vintage group, and

3. The total amount of property in éach vintage group surviving at

the beéginning of each year (plant balance of each vintage

group at the beginning of each year).
A particular property record may not contain all ofbthe above information.
Sometimes the only information available is the amount of property
installed each year, the amount retired each year, and the total plant
balance each year.

The extent of the property data available affects the choice of
methods of analyzing the data. The statistical methods of life analysis
‘are often divided into two categories: ‘the turnover methods and the
actuarial methods.' The turnover methods require data on the amount of
property installed each year, the amount retired each year, and the total
plant balance e@ch year. The actuarial methods generally require a com-
plete property record (as described in the preceding paragraph).

The turnover methods, with one exception, yield only an indication
of the probable average service life. The simulated plant balance method,
often rlassified as a turnover method since theQdata requirements are
similar, does yield estimates of both probable aﬁerage service life and

probable retirement dispersion pattern.



Estimates of both the probable average service life and the probable
retirement dispersion pattern can be obtained by use of the actuarial
methods. The tabulation of the raw data frequently results in an incom-
plete, original 1ife table., A life table is the amount, percent or propor-
tion of property surviving at each age; an original life table is a life
table calculated from the observed data. Before the probable average
service life and the probable retirement dispersion pattern can be esti-
mated, the original life table generally must be smoothed and extended to
zero survivors or zero percent surviving. Even if the original life table
is complete, the common practice is to smooth‘the original life table and-
use the interpolated values to estimate the probable average service life
and probable retirement dispersion pattern. |

A commonly used technique of smoothing and of extending (if necessary)
the life table is by fitting a mulbtiple linear regression equation, |
géneréily a polynomial, to thé retirement ratios by the method of least-
squares (4, pe 5); The retirement ratio for an age interval is the amount
of property, in terms of proportion, percent, units, or dollars, retired
during the age interval divided by the amount of property surviving at the
beginning of the age interval. A smoothed life table can be calculated
from the retirement ratio polynomial by starting with the amount installed
(1.00, 100%, units, or dollars) and successively multiplying the amount
surviving at the beginning of the age interval by one minus the inter-’
polated or extrapolated retirement ratio for"the_age_inte:&gl‘tpiobtain

the amount surviving at the end of that age interval.



Amount surviving _ (Amount surviving)(l _ Retirement ratio for age)
at age X + 1 at age X * interval X to X + 1

The linear regression equation is (16, pp. 382-383)

B X.) = + .
E(y| )=« B,
y = dependent variable
Xj = independent variable
o,B = parameters

which is estimated by

E(y|x.) = a + bx,
(rlx;) %
. =a +bx, + e.
Y3 %5 T8
a = estimate of «
b = estimate of B
.th - .
y'j = j  value of the dependent variable
Xj = jth value of the independent variable
ej = deviation of the jth observed value from the expected

value of the j°O observation given that x, is the
independent variable
In the situation of fitting a polynomial to the retirement ratlos

jth age interval

X,
d

observed retirement ratio for the j°° age interval

Y3

The unweighted least-squares method of fitting a linear regression
line yields Linear abiased estimators of o and B, which have the minimum
variance amongst the class of ail linéér unbiased estim;tors, if the
following assumptions can reasonably be made (16, pp. 382-384):

l. The xj values are controlled and/or measured without error.

2. The regression of y on x is linear, that is, E(ylxj) =g + ij.
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3. The deviations ys = E(y[xj) are mutualiy independent.

L., The deviations have the same variance (02, not usually known
exactly) whatever be the value of X

A fifth assumption is sometimes neceded (16, p. 384):

In order to apply many standard statistical technique;, the further
assumption that the conditional distribution of j, glven X, 1s
normal is needed.

This means the deviations mentioned in assumptions three and fouf, above;
mist be assumed to be normally distributed if ". . . many standard

n

statistical techniques . » » are to be used. Also, if this assumption

(i.e., e N,N(O,o2)) is valid, the least-squares method will yield unbiased’
estimators having the minimum variance amongst the class;of all»ﬁnbiased
estimators (9, pp. 113-11k). ” . .

The multiple linear regression model is of the form (16, p. 413)

E(y‘xl’ Fop t ot e W) Tat Byxy TRy, b ¥ B

where the X, may be powers of the observed x's, such as X, may be X5 x3
may be xi, etc. The assumptions of the multiple linear regression model
are similar tq those of the simple linear regression model listed above.

The fourth assumption, above, is often called the assumption of
homoscedasticity. If the assumption of homoscedasticity is invalid and if
the varilancas are not known quantities, the least-squares estimators of the
polynomial coefficients can be shown to be unbiased only under certain
conditions; very little can be said about the variance preperties of these
estimators (9, p. 410).

The following example is presented to illustrate the plausibility of
the non-constant variance of the retirement ratios from age interval to age
interval (i.e., that the variance of the deviation ¥ - E(ylxj) is not a

constant, where yd is the observed value of the retirement ratio at age
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interval Xj)’ Fabricated data for each of three vintage groups are shown
in Tgbles 1, 2, ahd 3. A composite of the retirement experiences of all
three vintage groups is shown in Table 4. The three vintage groups are
assumed to be three samplcs each of gilze 100 from the séme parent popula-
tion of property; the only difference between the units, as they are put

into service, is the year of installation.

Table 1. Fabricated data for vintage group T

Age, Age Age interval No. survivng No. retired Retire-
years interval, index number at beginning during age ment
years of age interval, iInterval, ratio
units units
0 0-1 L 100 10 0,100
1 1-2 2 90 15 0.167
2 2-3 3 75 25 0.333
3 3-4 L 50 25 0.500
4 4-5 5 25 15 0.600
5 5-6 6 10 10 1,000
6 6-7 7 0 --

Table 2. Fabricated data for vintage group II

Age, Age Age interval No. surviving No, retired Retire-
years interval, index number at beginning during age ment
years of age interval, interval, ratio
units units

0 0-1 1 100 8 0.080
1 1-2 2 92 15 0.163
2 2-3 3 7 23 0.299
3 3-L L 5k 29 0.537
L 45 5 25 13 0.520
5 5-6 6 12 o 10 0.833
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Table 2 (Continued)

Age, Age Age interval No. surviving No. retired Retire-
years interval, index number at beginning during age nment
years of age interval, interval, ratio
units ' units
6 6-7 7 2 2  1.000
7 7-8 8 0 -

Table 3. TFabricated data for vintage group ITI

Age, Age Age interval No. surviving No. retired Retire-
years interval, index number at beginning during age ment
years of age interval, interval, ratio
units units
0 0-1 1 100 ' 13 0,130
1 1-2 2 87 ' 18 0.207
2 2-3 3 69 29 0,420
3 3-4 b Lo ‘ o 28 0 T 0,700
L L-5 5 12 12 1.000
5 5-6 6 0 —

Table 4. Composite retirement experience of all three vintage groups

Age, Age Age interval No. surviving No. retired Retire-
years interval, index number at beginning during age ment
years - of age interval, interval, ratio
units units
0 0-1 1 300 .31 0.103
1 1-2 2 269 : L8 0.178
2 2-3 3 221 77 0.348
3 3-1 L Ll 82 0.569
e 45 5 62 %0 0.6U5
5 5-6 6 - 20 0.909



Table 4 (Continued)

Age, Age Age interval No. surviving No. retired Retire-
years interval, index number at beginning during age ment
years of age interval, interval, ratio
units units
6 6-7 7 2 2 1.000

7 7-8 8 0 -

The graphs of the regirement ratios versus the age interval index
numbers are shown in Figures 1, 2, and 3. Figure 4 shows the retirement
ratios for all three vintage groups plotted on the same graph.

Several characteristics of retirement ratios should, perhaps, be
noted:

1. Retirement ratios must be equal to or greater than zero and equal

to or less than one.

2. The retirement ratio values of a vintage group generally increase,
although not necessarily monotonically, as the age interval index
number (age interval) increases.

3. A retirement ratio of one occurs'only when all of the property
of the vintage group surviving at the beginning of the age
interval is retired during the age iﬁterval.

4., The observed retirement ratio at a giveﬁ ~ge interval is dependent,
to some extent, upon the retirement ratios for all preceding age
intervals because the number of units of a vintage group sur-
viving at the beginning of an age interval (the denominator of

the retirement ratio) is the number of units originally installed
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less the numbers of units retired during preceding age intervals
(the numerators of the retirement ratios of the preceding age
intervals).

5. The several retirement ratios at each age interval (one from each
vintage group) are not necessarily identical (see Figure 4), thus
suggesting the possibility of a vertical dispersion or distribu-
tion of retirement ratios at each age interval.

The percent change in the retirement ratio, for a given change in

the amount of property retired during the age interval, is dependent upon
the amount of property surviving at the beginning of the age interval
(the denominator of the retirement ratio)., If

@k = denominator of the retirement ratio for the kth age interval
then

dl 2 dy 2 d3 2. . 02 dK k=1,2, « « «, K
Therefore, a given change in the amount of property retired during an age
interval will generally cause a larger relative change in a retirement'
ratio if the retirement ratio is for a later age interval than 1f the
retirement ratio is for an earlier age interval.

Figure 5 is the usual retirement ratio plot of the combined experience
of all three vinbtage groups. The retirement ratio for the kth age interval
is calculated as the sum 6f thé retirement s from all vintage groups during
the kth age interval divided by the sum of the amounts surviving from all
vintage groups at the beginning of the kth age interval. Thus, Figure 5
illustrates a "horizontal” dispersion of retirement ratios across age

intervals. The possibility of a "vertical" dispersion of retirement
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ratios within each age interval, in addition to the horizontal dispersion
of retirement ratios across age intervals, is indicated in Figure k.
Figure 4 also points up the possibility that the variance of the vertical
distribution of retirements within an age interval is not necesgsarily the
same as the variance of the vertical distribution of the retirement ratios
within some other age interval.

The fourth assumption of the unweighted, least-squares method is
(16, p. 3833 see p. 9 of this dissertation):

These deviations (i.e., ¥ -E(y|x.)) have the same variance - - -
whatever be the value of xj. J

As applied to fitting a polynomial to the retirement'ratios, the above
assumption means that the variance of the vertical distribution of retire-
ment ratios at each age interval is assumed to be a constant (i.e., to be
the same from age interval to age interval).

The subject of this investigation is the possible non-constant
variance of the vertical distribution of retirement ratios and the effect

of such on the method of fitting a polynomial to the retirement ratios.
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OBJECTIVES OF INVESTIGATION

he smoothing, extending, and interpolating or extrapolating of
retirement ratios is a method frequently used in life analysils to obtain
a smoothed, complete life table or survivor curve. A number of assumptions
(16, pp. 382-384; see pp. 8-9 of this dissertation) must be made if the
unwelghted, least-squares method of fitting a polynomial to the retirement
ratios 1s to yield linear unbilased estimators of the polynomial coefficients
having the minimum variance amongst the class of all linear unbilased
estimators. Two of these assumptions, the third and the fourth, may not
be valid. The third assumption (16, p. 383) appears to be invalid in view
of the fact that the denominators of the retirement ratios, except the
denominator of the retirement ratio for the first age interval, are
dependent upon the preceding numerators. However, this third assumption
is not a subject of investigation in this dissertation.

The subject of this investigation is the validity of the fourth
assunption (of homoscedasticity) and a better means of fitting a polynomial
to retvirement ratios than the presently used, least-squares procedures
if this assumption is invalid. A solution to.the problems engendered
oy the failure of assumpbtion four is dependent upon ascertaining the
vertical distribution of the retirement ratios at each age interval and
estimating certain parameters of these vertical distributiahs.

The specific objectives of this dissertation are:

1. To investigate the vertical distribution of retirement ratios-at

each age interval.



2.

2L

To investigate methods of obtaining estimators of certain
parameters of the vertical distribution of retirement ratios
at each age interval.

To develop, if possible, a more exact method of fitting a
polynomial to the retirement ratios based on the findings in .

(1) and (2) above.
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PRESENT ACTUARTAL METHODS OF LIFE ANALYSIS

A life analysis provides information for life estimation. The use-
Tulness of the information is dependent mainly upon the approériateness
and reliability of the property data analyzed, the models used in analyzing
the data, and the interpretation of the results. At best, the results of
a life analysis provide more or less accurate estimates of the past
mortality characteristics of the property in question. These results
should be used in life estimation only to the extent that the past
mortality behavior of the property is expected to be similar to the future
mortality behavior of the property.

Two basic assumptions of life analysis, regardless of the methods
used, are:

1. The mortality behavior of a property follows some 'law of

mortality"” expressible in terms of time or some other variable.

2. The past mortality behavior of a prdperty is indicative, to a

greater or lesser extent, of the expected future mortality

behavior of the property.
Although the "law of mortality" is generally expressed in terms éf time,
it could be expressed in terms of units of production or some other
suitable variable(s). The first assumption implies that no extraneous
variables make the relationship between retirements and time (or other
varisble) of little consequence. The extent to which the secaad assump-
tion is incorrect is usually considered in the life estimation process.

Several methods of life analysis are called actuarial methods because

of their similarity to methods developed by life insurance actuaries to
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study human mortality (8, p. 44). The process of life analysis utilizing
an actuarial method(s) can be roughly divided into three broad steps:

l. The selegtion of the property data to be analyzed and the
aggregation of this data in a useful form.

2. The seiection of the method(s) of obtaining the original life
table or original survivor curve (or a derived curve, such as a
retirement ratio curve), the seiection of the particular data
set(s) to which the method(s) is to be applied, and the
applicétion of the method(s) to the data set(s).

3. The selection and application of a method(s) of smoothing and
a method(s) of extending (if necessary) the original life table
(or original survivor curve or some other curve), and the inter-
polatién and/or éxtrapolation of values to obtain a complete,
smoothed life table. |

In a life analysis study of a property, different methods of dbtaining
an original life table, etc. may bé applied to different data sets and the
resulting original life tables smoothed and extended by one or more

methods to provide information about trends in mortality behavior.

Related Concepts
The actuarial methods of life analysis are based on statistical
concepts. A basic concept of statistics is a probability distribution.
A table of the possible values which a chance event may assume
with a corresponding probability for each value is called a
probability distribution for the parent population (1, p. 19).

A mathematical function representing a probability distribution is called

a probability distribution function (distribution function). The
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probability of obtaining some value for an event which 1s equal to or
less than a specified value is called the cumulative distribution; a
mathematical function representing the cumilative distribuﬁion is called
a cumulative distribution function. Distribution functions, and the cor-
responding cumulative distribution functions, may be either discrete or
conbinuous functions; the appropriate form is dependent on whether the,
values the chance variate can take on are discrete or continuous.

The requirements of a function to be a discrete probability function

are (24, p. 33)
>
N
2. IDf(x)=1 i=1,2, ¢, N

i=1
where

X; = the possible values which the chance variate, X, May assume
fl(xi) = the probability that x takes on the values xi;
i=1,2, N
Then the cumulative distribution function, F(a), is

Pr(x < a)

]

F(a).

a
iflf(xi)
" where "a" is some specified value of x. Also

Pr(a Sx SD)

b

R f(xi)
i=a

For the continuous distribution case, the assumptions are (24, p. 33)

¥la, b)

1. f£(x) €0

2. ffm £(x)dx = 1
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Then
F(a) = Pr(x < a)
= [* f(x)ax
Fla, b) = Pr(a S x <)
= j: £(x)ax

The mathematical expectation of x, denoted as E(x), is the mean or
average value of x. E(x) is the sum of the products of the distance of
each X from the origin times the probability that the X, will occur

(i.e., the first moment of x about the origin). For the discrete case

N
E(x) = Zx f(xi)
i=1
and for the continuous case
o0 o
B(x) = [ x f(x)ax
The variance of x, denoted as 02, is the second moment of x about the
mean, E(x). Iet
b = E(x)
Then
2 2
o = E(x - p)
which for the discrete case is
N
2 _ 2
o= I (xi - W) f(xi)

i=L
and for the continuous case is

o® = [* (x - p)? £(x)ax
If the individual service lives (ages at retirement) of the units
comprising a property group are represented by xé, then f(x') is the
distribution function of the service lives. Service life could be

measured on a discrete scale or on & conbtinuous scale., The mathematics
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of both the continuous case and the discrete case are presented because
both the concept of a continuous scale and the concept of a discrete
scale have proven to be useful. The presence of a summation symbol, I,
in an equation indicates that service 1ife is being considered as a
discrete variable and the presence of an integral symbol, f, indicates
that service life 1s being considered as a continuous variable.

Even complete property accounting records generally show only the
number of units in a vintage group and the year of installation of the
vintage group and not the exact time that each unit of the vintage
group was installed (and similarly for the time at which units are
retired). For the discrete case, a common set of assumptions (often
referred to as the half-year convention) is (20, pp. 147-148):

The assumption is made that the installations of a given

calendar year were made somewhat uniformly throughout the year;

therefore, the assumpbion that all the units were zero years old

on July 1 of the year of installation is appropriate. The average
age of retirements would then always be the integral years

1, 2, 3, etc. But retirements having an average age of, say

3 years, must be composed of units having specific ages varying

from 2 1/2 to 3 1/2 years. Ages for specific reference in the

calculation of the survivor curve or for a January 1 inventory
date must be expressed on the 1/2-year basis.

Another customary assumption is that property retired during the

same calendar year as it was insballed is retired during the age

interval 0-0 1/2, or at an average age of O 1/k4 year.

Therefore, for the discrete case only, let

xﬁ = age index number
xi = age 1/k years
xé = age 1 year
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x, = age K-1 years

X
= maximum age index number -
X, = age interval index number
x, = age interval O to 1/2 years
X, = age interval l/é to 1 1/2 years

e & @ o 8 ¢ & ¢ o & & ©o & 5 @ » O 4 5 © & o * ¢ & s @ °

x.. = age interval (K - 1 1/2) to (X - 1/2) years

f(x’) = distribution function of the service lives
f(xﬁ) = probability of any unit being retired at age xﬁ
f(x) = distribution function, by age intervals, of the service lives
f(xk) = probability of aﬁy unit being retired during age interval k
_Also, let
w = maximum life when measured on a continuous scale

The average service life of a property group, ASL, is defined as the

average age of all units at retirement (Figure 6).

ASL = E(x)

K
= 3 £(x, ) k=1,2, +, K
k=:Lxk "

where

Also
ASL = [¥ x £(x)ax 0SxSy
The cumulative distribution function. (Figure 7) is
a
F(a) = T £(x.)
k=1 E
or

| F(a) = j‘i £(x)dx

(1)
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where
a = some specified age
The survivor function or survivor curve, y(x), represents the

proportion of units surviving at any age (Figure 8).

ya-3) =1- Z <))
or
y(a) =1 - [7 £(x)ax
Also, since
K '/ =
o) =1
j‘:.f(x)ax =1
Then

n_ &,
y(a - 5) = ‘k=§+lf(xk)

y(a) = I: £(x)dx

For example

y(3 - %) = y(2 1/2)

3
5

L - 2() - 2(x)) - 2(x))

1 - retirements of average age 1/4 - retirements of

average age 1 - retirements of average age 2

survivors at age 2 1/2
X
z £(x)

k=a+1 xk

= £g) +2(eg) + e e+ £l



iving

Proportion Surv

1.00

0.80

0.60

0.Lo

0.20

0

31

. : ®
01/2 11k 21/2 31/2 Llf2 51/2.61/2

Age, Years

Figure 8.

Survivor curve

©



= retireﬁents of average age 3 + retirements of average
age b + « ¢ o + retirements of average age K - 1

The area under the survivor curve can be approximated by numerical
integration and is equal to the average service life (as will be shown).
In this particular case, finding the area under the curve using horizontal
ares strips is convenient. The difference in height of two successive
points on the survivor curve (ages O and 0.5, ages 0.5 and 1.5, etc.) is
the width of thg horizontal area strip and is just f(xk). The average
height of the horizontal area strip is the distance from the y axis to
mid-way between the two points on the survivor curve (or .one-half of the
sum of the ages at the begimning and end of age interval k). .

(1/h) £Gey) + (@) £(xy) + =+ o+ (K - 1) £0x)

I}

AST

K .
zx flx) (2)

oy KUK

Equation 2 is the same as equation 1, thus showing that the area under
the survivor curve is equal to the average serfice life. The average
service life can also be calculated as the first moment of the frequency

distribution about the origin. B

X
= Y x! flx’ —
asp = % g 20g)

= (1/4) £(x)) + (1) £(x) + .+« + + (K- 1) £(xg)

The retirement ratio, Ty for an age interval k is defined as

;. = Dumber of units retired during age interval k
k¥ nuber of units surviving at the beginning of age interval k

= pr0por£ion retired during age interval k
proportion surviving at beginning of age interval k

In the discrete case,‘f(xa) represents the proportion of the original.
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placement. of units retired during the age interval a.

f(xa)
Ta B a-1 ( )
l- =f
k=1 &
f(xa)
=
Z f(xg)

k=a,

The retirement ratio for the continuous case is

£(a)dx
1- % f(x)ax
Yo

r =
&

= f(a)dx
y(a

= - djyla
yia
The survival ratio, 840 for an age interval a is defined as

- number of units surviving at end of age interval a
a number of units surviving at beginning of age interval a

- broportion of units surviving at end of age interval a
proportion of units surviving at beginning of age interval a

K
Z Foad).

_ k=atl

K()
f
kE; 'k

For the continuous case

_ y(a) + aly(a)]
a v(a)

s

since the number or proportion of units retired during the small interval

of time after y(a) is - d[y(a)].
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The survival ratio is also equal to one minus the retirement ratio.
f(xa)
a K

T £(x)

or

_y(a) +aly(a)]
v(a)

Expectancy is defined as (28, p. 12):

« « . that period of time extending from the observation age
(usually the present) to the average of the forecasted dates
when the units probably will be retired.

Expeétancy is the future average years of service expected from the units
surviving at the observation time. The expectancy at any age, Ea _ 1/2, is

_ area under the survivor curve to the right of age a - 1/2
a - 1/2 ~ proportion surviving at age a - 1/2

E

X

Z (m e - 1/2) 2]
K

z fx)

=g,+1L

or
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Jo - fL e(e)ax]ax

a 1 - 'j"i £(x)dx

Y y(x)ax
The probable life of the units surviving at any age,,fé - 1/ is
defined as
Byo1fe"@ " WR2EE _yp
If the frequency with which Xﬁ occurs (rather than the proportion
retired at an average age of xﬁ) is known, the distribution function,
cumulative distribution function, average service lifg, gté.,_mgy be
Stated as foliOWS for the discrete case. ILet . |
f(xﬁ) = frequency with which xé occurs
xé = gverage age at retirement (includes the ages x’k - 1/2 to
x, +1/2)

Then
£(x;)
X

z "
Ny ")

f(xé) =

proportion retired at an average ege of xﬁ; the

distribution function

.F(a)



36

The nunber of units surviving at any age is
a
vi(a - 1/2) = waﬁ- 5 £(x)
k=1 k=1

The proportion surviving at any age is

T E() - % o)
L) - T Ff
k=1 Xk) k-—lxk

i}

y(a - 1/2)
lflf(xk)
2 f(xk)

1 -

T

I

Also K
V4 "
2(x!)/ Zif(xk)

x// Z 4
kf;f( /k £(x)

—f(xg)
: (x)
5 f(x;)

- k=a Xk

]

K ( K
E f /4 14
_ k=a+l X-'L{)/l«:zlf (xk)
fa - T X K
)3 f( Y £ f(
k=g, k=1

IE{ f( //)
k=a,+1L &
X

T £0xy)

k=g,



37

K K
z {(k-a- 1/2>[f(x1’;)/k§lf<xl’;>]}

_ k=a+l
AREL: (x)/ 5 2(x)
Z f” Zf V4
k=a+l[ xk k=1 Xk ]
s ( /2) £
T (k-a~1/2) £f(x'
_ k=aitl ) x
; ()
r f
=atl x
Pa_l/2=a-l/2+E -1/

The amount surviving at any age is oftep expressed as a percent.
The percent surviving can be calculated by multiplying the proportion
surviving by 100%.

Mathematical expressions for the continuous case can be derived in

a similar manner.

Selectlon and Aggregation of Property Data
The data to analyze for the purpose of predicting the mortality
behavior of a property are, generally, the historical data of that
property. Certaln assumptions are generally maie about the property
data i
1. Historical data on the same or a similar property group are
available,
2. The property group is composed of homogeneous units or of
~different units in substantially the same relative amounts as
are expected in the future.
3. Sufficient data in a usable form are available to make an

actuarial life analysis.
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Historical data on the property which is the subject of a life
analysis may not be available or may be unusable. In this case, the
analyst may analyze the historical data of a property which he thinks
will exhibit mortality behavior similar to that of the property which is
the subject of the life estimation process. The results of a study of a
similar property should be given only such weight in the life estimatign
process as is appropriate. Another, infrequently used alternative is to
take a complete inventory of the property. A third alternative is to
proceed directly to the life estimation process without making a life
analysis study; the analyst's knowledge and his experience in life analysis
provides the type of information which is usually obtained through life
analysis.

The subject of the homogeneity of a property, for life analysis
purposes, involves at least two areas: (1) the physical characteristics
of the property and (2) the measure of the amount of property; A property
group account may include several different sizes and types of property.
Even if only one size and type of property is recorded in a given account,
heterogenelty may arise from including property manufactured in different
years and which may be different because of modifications in materials
and/or design.

Two common measures of the amount of property are physical units and
dollars, the latter being the most frequently used measure. The age at
retirement of one physical unit may be (and often is) independent of the
age at retirement of any other physical unit. On the other hand, the
© physical units comprising a vintage group are often heterogeneous because

of their different physical characteristics.
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Dollars are homogeneous in the sense that one dollar is numerically
equal to another dollar. Thus, dollafs provide a common scale for
measuring amount of property. Hdwever,'the number of dollars invested 1n
one item of a property group generally is not the same as the number of
dollars invested in another item of the property group. The age at
retirement of one dollar is rarely independent of the age at retirement
of some other dollar(s). Hence, dollars are not independent random
variables; a fact which might inhibit development of a statistical pro-
cedure for fitting polynomials to retirement ratios.

Howard (15) compared the average lives and the accrued depreciation,
for group property, computed on (1) a unit basis and (2) a dollar basis.
Data on the mortality experience of freight cars were used. Complete
physical-unit data were available for the years 1918 through 1945. The
only dollar data available were ". . . the total dollars remaining in
service January 1 of each year, the total dollars placed in service each
year, and the total dollars retired from service each year" (15, p. 19).
Thereforé an average unit cost for each unit installed in a vintage year
was calculated by dividing the total dollars placed in service that year
by the number of freight cars placed in service that year. The results
of his study indicated that the average service lives of the freight cars
were, at most, one-half year greater when calculated on the dollar basis
than when calculated on the unit basis. The difference in average
service lives on a unit basis and on a dollar basis was attributed to the

greater weight given to more recent placements because of a rising price

level.
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The results are indicative of the differences to be‘expected because
of price level changes. They are not indicative of the differences to
be expected because of between-unit price differences because of his
averaging of unit costs within a year.

' The records of the property group selected for study must be care-
fully reviewed. The data may need to be adjusted for a number of reasons,
such as: the type(s) of property included in the property group has been
changed from time to time or accounting practices have been changed from
time to time or data on properties which have been sold or acquired as
used, but useful, property have been included in the record (5, pp. 7-10).

Despite the importance of this factor, and the fact that the time
required to correct and adjust the books of account is ordinarily
many times the manhours required to make the statistical analyses
themselves, the literature on this subject is not very helpful.

It is replete with warnings that early book records are often
incomplete, that accounting distinctions between capital and
maintenance charges have undergone changes, that the type of
equipment represented by a given plant account may change from one
generation to the next, and so forth, but it contains very little

by way of specific suggestions for approved treatment of the raw
data to make them suitable for analysis (5, p. 10).

Original Life Table

An original life table is a tabulation from the raw data of the
amount of property surviving from an original placement at each age. A
plot of the amount surviving versus age (generally on rectangular
coordinate graph paper) is called an original survivor curve.

The amounts surviving may be expressed as physical units, dollars,
proportions, or percents. If the original life table or original survivor
curve 1s expressed in terms of percents or proportions, a more direct

comparison cain be made between different life tables or survivor curves.
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Percent surviving is commonly used and will be used hereéfter unleés
otherwise noted.

The original life table may be obtained from the raw data in at
least five ways: individual-unit method, original-group method, composite
original~group method, multiple original-~group method, and annual-rate
method (28, pp. 17-18). The choice of method(s) to use is dependent on
the data available, the purpose of the life analysis, and the type of
information to be obtained in applying the method. As mentioned pre-
viously, one or more methods may be applied to several different data sets
to obtain information about the mortality behavior of the property.

The original-group, composite original-group, and annual rate methods
require relatively complete historical data covering the years of |
experience of the vintage group(s) included in the analysis. The
individual-unit and multiple original-group methods require less complete
data but yield less useful results than the other three methods. These
two methods are used, generally, only if the data available are insuffi-
clent to permit use of c... of the other three methods.

The results obtained by the application of these five methods to the
historical data of property will usually be different. These differences
in results are due to various facters, such as:

1. Use of different data sets,

2. Random variation in sample data, and

3. Changes in the mortality behavior exhibited by the property group

resulting from changes in those factors influencing the retirement

of property.
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Individual-unit method

The individual-unit method can be used when the only data available
are the amounts and ages at retvirement of property retired during a
calendar year or several adjacent calendar years. The retirements during
the calendar year(s) are arranged in ascending order according to age at
retirement. The sum of all such retirements is taken to be the total
amount of property "surviving" at age zero. The percent surviving at
each successive age or the percent surviving at the beginning of each
successive age interval is the amount of the retired property that was
retired at a later age. The original life table will always extend to zero
percent survivng because only retired property is considered in calculating
the table.

The average service life obtained by numerical integration is the
average age at retirement of those units retired during the calendar
year(s) of observation, not the probable average sérvice life of the
property. If the property has not reached stability (i.e., no growth,
no decline, and renewals approximately equal to retirements), the average
age at retirement may not be a very good approximation of the probable
average service life of the property. Similarly, the retirement disper-
sion pattern obtained may not be a very good approximation of the probable

retirement dispersion pattern of the property.

Original-group method

Data required for the original-group method are:
1. The amount of the property installed in a given year, a vintage

group, and
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2. The amounts of and ages at retirement of the property already
retired.
If the original life table is incomplete, the table or the corresponding
survivor curve will have to be extended to zero percent surviving before
the mortality characteristics can be ascertained.

The calculated, probable average service Llife is the probable
average service life of the particular vintage group. A stady of
successive vintage groups may indicate trends over time, 1f any, of the
mortality characteristics of the property due to changes in tﬁe physical

characteristics of the property.

Composite originsl-group method

The composite original-group method treats the combined mortality
experience of two or more vintage groups as the mortality experience of
a single group. Data requirements are similar to those of the original-
group method. If an incomplete, original life table is obtailned, the
table or the survivor curve must be exbtended to zero percent surviving
before the mortality characteristics can be ascertained.

This method is especially useful when only a relatively small amount
of property is installed each year and/or the mortality experience of a
single vintage group is erratic. The mortallty characteristics obtained
are composites of the mortality characteristics of the Individwal vintage
groups included in the single combinéd group.

A rolling-band study, a series of analyses of different composite
groups, may indicate trends in the mortality characteristics of the

property over time. Each successive composite group is formed from the
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preceding composite group by eliminating the oldest (or youngest) vintage
group in the composite group and adding the vintage group just subsequent
to (or just preceding) the composite group.

As the number of vintage groups included in the composite group
increases, the mortality experience of the composite group tends to become
less erratic. On the other hand, grouping a large number of vintage

groups into a single group tends to mask trends in the mortality behavior

of the property.

Multiple original-group method

The multiple original-group method requires data on the ages and
amounts of the property surviving as of a given date. A table of the ages
and amounts surviving, arranged in order of increasing age, constitutes
the original life table. Percent surviving values can be calculated by
using the amount surviving from the most recent vintage group as tie

denominator of the fraction

- amount surviving at age x
ercent surviv at age x = — 10
b 4 ne © amount surviving at age zero (100%)

If the percent surviving at any age exceeds 100%, when calculated in the
above manner, the common practice is to reduce such values to 100%.

Successive entries in the ofiginal life table may be largef or
smgller than previous or subsequent entries because:

1. ZEach vintage group provides one entry in the table,

2. The amount of property suxviving from a vintage group is related

to the amount installed during that vintage year, and
3. No conslderation is éiven to the various amounts installed during

each vintage year nor to the amounts already retired from each
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vintage group.
Unless the property has reached stability, the original life table and

original survivor curve tend to be erratic and incomplete.

Annual-rate method

By this method, the original life table is calculated from that
mortality experience of a number of vintage groups (called the placement
band) exhibited during & given period of years (called the observation
band). The data required on each vintage group included in the placement
band are:
| 1. The ages and amounts of property (in units or dollars) retired

each year during the observation band of years and

2. The amount of property sufviving at the begiﬁning of each year

that the vintage group 1s included in the observation band.

A retirement ratio for %ach age interval is calculated as follows

Y property from the ith vintage group
i=l retired during the age interval x - 1/2
tox + 1/2 during the observation band
of years

x -1fetox +1/2 I o

2 property from the i~ vintage group sur-

1=1 viving at age x - 1/2 during the observa-
tion band of years

index number of the vintage group

XN
Il

=1,2, ¢, I

The percent surviving at the end of each age interval can then be
calculated by starting with 100% surviving at age zero and successively
multiplying the percent surviving at the beginning of each age interval

by one minus the retirement ratio for that age interval.
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If sufficient data are available, the annual-rate method is generally

one of the methods used to obtain original life tables in a life analysis
because:

1. The mortality experience of tﬁe most recent vintage years can
be utilized,

2. The mortality behavior of the property during the observation
band of years reflects the effects of management policies,
economic conditions, public requirements, etc., on the retirement
of property during the observation banq of years, and

3. Both property surviving and property retired are considered.

A rolling band type of analysis, in which the most recent (or earliest)
year of the observation band is eliminated and the year preceding (or
subsequent to) the earliest (or most recent) year of the observation band
is added, is frequently made to study any trends in the mortality
behavior of the property.

Marston et al. (20, p. 154) suggest an observation band of three to
thirty years. An observation band of only a few years permits the more
recent mortality experience of the property to exert a greater influence
on the values in the original life table. On the other hand, an original
life table based on a narrow observation band is more likely to be erratic

than an original life table based on a relatively wide observation band.

Methods of Obtaining a Smoothed Life Table
The original life table or original survivor curve is frequently
incomplete because not all of the units of even the oldest vintage groups

included in the data set have been retired. A complete life table or
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survivor curve must be obtained before the mortality characteristics of
the property can be ascertained.

The process of obtaining a complete survivor curve 1s composed of two
steps: (1) fitting a smooth curve to the existing data and (2) extending
the smoothed curve to zero percent surviving. A smooth curve may be
fitted to the available data by a variety of methods, such as the various
matching and mathematical methods. ExtenaingAthe smoothed curve to zero
percent surviving is a matter of judgment. Where the method of smoothing
provides an "extension" of the curve, this extension is often accepted
unless it is obviously incorrect. A more appropriate approach is to use
Judgment to select the most likely extension of the curve, the extension
obtained from the smoothing step being considered as only one of the
possible alternatives.

Three generél methods of fitting a smooth curve to the raw data are
judgment, matching to type curves, and statisﬁical methods. Even if a
canplete, original life table is obtained, a smooth curve is often fitted
to the déta, by one of the above methods, before the mortality characteris~
tics are ascertained. Marston et al., with reference to estimating the
probable average service life from the survivor curve, say (20, p. 164):

The stub curve must be ektended t0 zero percent survivng and the

irregular curve should be smoothed before the average service life

is computed. The objective is to obtain the most probable average
service life. Such probability is indicated by a smooth complete
survivor curve because such a smooth curve is the type most likely

to result from observations at regular yearly intervals of large
numbers of exposures to retirements.
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Judgment method

smoothiﬁg the survivor curve by judgﬁent is accomplished by plotting
the percent surviving at each age on rectangular coordinate graph paper
and drawing, by judgment, a smooth curve thréugh the}points. Extension
of the survivor curve to zero percent surviving is'frequently accomplished
by judgment, also. Obviously, no two analysts given the same set of
points on a survivor curve are likely to draw exactly the same smooth
curve; however, the difference between two such smoothed curves may be

negligible from a practical point of view.

Numerical integration of the survivor curve yields the prdbable'
average service life. Additional calculations are required to obtain the
expectancy and probable life at each age. Utilization of a high-speed -
digital computer would greatly reduce the time and effort involved in

numerical integration and in subsequent calculations.

" Matching method

The matching method involves compéring the original survivor curve,
or a related curve, to a family of standardized curves and selecting that
member of the family of curves which best fits or represents the data
points. The criterion for determining which member of the family best
fits the data is generally judgment. Other criteria may be used, such as
selecting that member of the family of curves which minimizes the sum of
the squares of the differenceg befweeﬁ the members of the family and the

original survivor curve.
The Iowa type curves are the most widely recognized family of standard

crves (4, p. 19). Bulletin 125 Revised, of the Towa State University
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Engineering Research Institute (28), contains all twenty-two of the Iowa
type curves. The original eighteen Iowa type curves, developed by Winfrey
and Kurtz (28, 29), are divided into three sets on the basis of the
position of the mode of the frequency curve with respect to the average
service life: six left-modal, seven symmetrical, and five right-modal.

- Couch (3) developed three origin-modal curves and, also, the data for the
straight line survivor curve, in 1957. All fow of these curves were
designated as origin-modal.

A common procedure in using the Iowa curves is tq first plot the
original surviﬁor curve points on transparent, rectangular coordinate graph
paper. The standard Iowa curves are drawn on graph paper to a similar
scale and for various average service lives. The plot of the original
survivor curve points is superimposed on the graphs of the standard |
curves and the best fitting standard curve chosen by judgment. Winfrey
suggests drawing a smooth curve, by eye, through the points of the original
survivor curve before comparing the plot to the standard curves (28,

p. 85).

Hoover (14) investigated the possibility of using an analog computer

to match standard curves to the original survivor curve points. The

circultry for the following types of standard curves or functions were

developed:
1. Icwa type survivor curves,
2. Weibull survivor function,
3. Gompertz-Makeham survivor function,
L. Truncated normal distribution function, and

5. Polynomial retirement ratio function.
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Hoover matched the Iowa type curves to the stub data developed by
Cowles (4). The standard curves were successively generated and displayed
on an oscilloscope to which was taped a plot of the original survivor
curve points; the cﬁrve type and average service life were controlled by
the computer operator. The best fitting standard curve was selected by
Jjudgment. Hoover concluded that the.analog computer.could be used to
develop estimates of mortality dispersionvpattern and average service
life.

Kimball (17) developed a family of curves.(called the h-type curves)
based upon a truncated normal distribution of retirements. The truncation
of the frequency distribution occurs to the left of the average service
life (i.e., at age zero). Hence, the h-type curves are generally left-
modal. The relatively high-modal curves are eésentially symmetrical and
have small variance, As the modal value decreases, the variance increases
and the freguency distribution becomes more and more left-modal with the
negative exponential as the limiting form.

Although the h-system of life tables is of course not applicable

to all cases of property retirements, for purposes of the general

consideration of the behavior of property retirements in the

broader aspects of the problem it is very useful to have such a

system of life tables available in simple mathematical form.

Tests of this system against several hundred life tables based

on actual experience of utility property studied in the Bureau
of Valuation of the New York Commission indicate very close

agreement (17, p. 359).

Other famllies of type curves have been developed, such as the

Patterson curves (22, pp. 60-68).
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Statistical curve fitting methods

Statistical methods of fitting a smooth curve to raw data exhibit a
number of desirable characteristics:

l. Any two analysts utilizing the same mathemagtical model and
fitting technique to fit a smooth curve to the same raw data
points should obtain the same results,

2. High-speed digital computers can.be utilized making it possible
to analyze é large number of data sets in a relatively short
period of time, and

3. Human judgment is eliminated from the process of fitting a
smoothed curve to the raw data points (this may, at times, be
undesirable).

Judgment must be used in selecting the mathematical model, the fitting
technique, and the data sets to be analyzed. '

An extension of the smooth curve beyond the raw data points can be
obtained from the mathematical function. Whether such an extension is
reasonable or not is a matter of Jjudgment. Unfortunately, mathematical
methods foster an opposite approach, that of accepting the mathematical
extension unless the exbtension is clearly unreasonable. |

Mathematical functions caﬁ be fitted to a number of different, but
related, sets of data points or ratios, such as the observed life table,
the survival ratios, the retirement ratios, the retirement frequency dis-
tribution, or the cumulative retirements.

A frequently used method of obtaining a smoothed life table is the

retirement ratio method. A function, such as a polynomial or power
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function, is selected by Jjudgment and the function fitted to the retirement

ratios by the method of least-squares (5, p. 15). Polynomials are,
perhaps, the most frequently used functions and will De uSed‘for‘illustra—
tive purposes.
The retirement ratio at an age interval, say k, is defined as
£(x)

I‘k=r—"‘ k=l,2".',K

E £(x,)
f(xk) = number of wnits retired during age interval k
If the composite-original group method or the anmual-rate meﬁhod is used
to obbtain the original life table, the experience of several vintage
groups must be combined to obtain the retirement ratio at each age
inferval. A weighfed average retiremsﬁt ratio (rather than the average
of the several retirement ratios) is usually calculated. Iet

S.., = number of units surviving at the beginning of the kth_

ik
age interval from the ith vintage group contributing
experience to be included in the kth age interval
retirement ratio
X
- lf £(x;)
Rik = pnumber of units retired during the kth age interval from

the ith vintage group contributing experience to be
" included in the kth age interval retirement ratio
= £(x5y)

Then
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The weight given the retirement ratio of each vintage group is the number
of units of that vintage group exposed to retirement at the beginning of

the age interval.

r weighted average retirement ratio

Xk

R - R

S]_k+'s2k“'+SIk

But

therefore

(
i__z_lf %)
T X (
z T f(x.,)
i=1 k  iE

The function to minimize, when fitting a polynomial to these rebtire-

ment ratios by the unweighted, least-squares fitting technique, is

. K

. 2

Min z [r, —(a+'bx] tex tee )]
a,b,c,etec. k=L k

2

Quite often a weighted least-squares fit 1s made by weighting the

welghted average retirement ratio at each age interval by the total number'
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of units surviving at the beginning of that age interval.
Because the several plotted points do not carry equal weight, as

pointed out before, it may be felt worth while to weight each
according to the dollars or number of physical units involved

(5, p. 15).

The function to minimize for the weighted least-squares fit is:

. LI 2 2

a,,'b,Bc,Ij-Ztc. kzil{iflsik[r.k - (a + 'bxk_ tox toe o )77}

Only rarely is a polynomial of the fourth degree, or higher, selected
as best representing the retirement ratio curve (21, p. 248).

Cowles (4) compared the results of smoothing and extending stub data
by the matching method with those obtained by an unwelghted, least-squares
Tit of the weighted average retirement ratios. Since the stub data was
obtained by truncating complete, original 1life tables, the mortality
'behavior predicted by the two methods could be compared with the mortality
behavior which actually occurred. Cowles concluded (4, p. 112): |

Under the conditions adopted, i.e.; the stipulations for the

analysis of the retirement data, the standard assumed, and the

comparison bases used, no consistent superiority was enjoyed by

elther the Iowa type curve method or the use of orthogonal
polynomials in estimating mortsality dispersion.

Scigliano (26) fitted the Weibull hazard function to the retirement
ratios of the stub data developed by Cowles. The form of the Weibull

hazard function used was

i

r(6) = apt?~t

r(t) = retirement ratio
t = time
o= shape'parmeter

A = scale parameter
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He used the ". . . Gauss-Newton iteration scheme for non-linear regression
analysis . « " to estimate o and ) (26, p. 21).

The stub curves were also fitted by matching (he used the results of
Cowles' study) and by an unweighted least-squares fit of the weighted
average retirement ratios., The matching method and the polynomial retire-
ment ratio method appeared'to yield somewhat better estimates than the
Weibull hazard function (26, p. 99). However:

« o » in most of the those cases where the present methods were
superior the computation method or data caused the error (26,

De 57)e
Either the Gompertz or the Gompertz-Makeham equation can be fitted

to the original survivor curve. The Gompertz equation is (19, p. 112)

X
Lx = kg |
and the Gompertz-Makeham equation is (19, p. 113)
« .
_ . X C
Lx = ks g
where
Lx = percent surviving at age x

k,s,g,c = constants to be determined from the data
The Gompertz equation expresses the "force" of retirement as an increased
inability of the property to "withstand" retirement as the age of the
property increases.  The Gompertz-Makeham eqqation‘inqludes‘the_ébove
"force" and, also, a constant, chénce "force" of retirement unrelated ﬁo
age.

Nichols (23) investigated moments of the frequency distribution as
means of estimating average service life and dispersion pattern. The
procedure developed for estimating these mortality characteristics

involved both a mathematical model and a matching process.
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Two moment rabtios were ubilized

second moment of the frequency curve about the mean

Ml=

(mean)2

third moment of the frequency curve about the mean

M2=

The standard moment ratios were calculated from the complete, standard

(mean)3

Towa type curves and the standard Iowa type curves stubbed at varioué
points. Plots were made of Mi versus Mé at each of the percent surviving
points, Mi versus percent survivng, Nb versus percent surviving, and
N&/W% versus percent surviving.

The test data used were those obtained by Cowles (4) stubbed at two
different levels of percent surviving. The Mi - Mé percent sur?iving plot
was ‘the primary classifying plot. Where the M1 - Mé percent surviving
plot did not yield a clear indication of a particular type of curve, the
other plots (mentioned above) were used as supplementary guides. Service
life multipliers were developed from which an estimate of the probable
average service life could be obtained. |

Although some of the test curves could not be classified at all,
Nichols concluded that the moment ratio method appears to be a valid
method of life analysis (23, p. 88).

Krane (18) developed a procedure for fitting a polynomial to the time
integral of the retirement ratios and thus obtaining the life table by
graduating the negative exponential function. |

y(x) = ¢ 8

y(x) = proportion surviving at age x
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g(x)

il

time integral of the retirement ratio function

X
t)dt
fo r(t)d
For large samples 1t is found that the covariance structure for the
polynomial regression of y(t) (g(x) in the above notation) on t
may be obbtained from the multinomial distribution when the data
are grouped. Thus the method of weighted least squares may be
employed in fitting y(t) (i.e., g(x)). "Censored" data in no
way vitiate the method (18, p. 161).
Krane applied his procedure to one set of data from Cowles' study
(4). The results were encouraging.
Henderson (13) fitted the cumulative distribution form of the Weibull
fﬁnction to the data of Cowles (4). The form of the Weibull cumulative

distribution function utilized was (13, p. 38)

P(x) = 200(1 - expl-(t/exp w)/2)
exp = e
L = life of property
p = position of the mode
B = gcale parameter

The results of the Weibull fits of the data were compared to the
results of fitting Iowa curves to the data by the matching method. The
Weibull distribution yielded a better fit for symmetrical type data (13,

p. 47). The Towa curves fit data with the mode to the right of the mean
bebter than the Weibull distribution (13, p. 47). No significant dif-
ference was found (1) in the ability of the £wo methods to fit data with
the mode to the left of the mean (13, p. 47) and (2) in the general ability

of the two methods to describe industrial property mortality experlence

(13, p. 57)
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A smoothed life table may also be obtained by fitting a mathematical

function to the survivor ratios.

s survival ratio for the kth age interval

°k

S+
5.,

The commonly used mathematical function is a polynomial. The amount
surviving at each age is calculated by the successive multiplications of
the amount surviving at the beginning of the age interval by the inter-
polated (or extrapolated) survivor ratio for the age interval.

No one method of obtaining a smoothed, complete 1life table seems to
yield the best results in all situations. Both the matching method (using
Towa type curves) and the retirement ratio method (using polynomials)

are frequently used and yield satisfactory results in many situations.



59

INVESTIGATION

The vertical distribution of retirement ratios at an age interval
was investigated empirically by simualation. An estimate of the form of
the vertical distribution was obtalned by comparing the plot of the
cumulative distribution of the simulated retirement ratios with a plot
of the cumulative distribution of a standard distribution function. Iowa
type curves were used to provide the underlying, horizontal retirement
dispersion patterns.

All calculations were performed on an IBM System/360 Model 50
digital computer at the Computation Center of Iowa State University of

Science and Technology, Ames, Iowa.

Simulation of Rebirement Ratios

A particular Iowa type curve and average service life specifies a
provability distribution, and hence, a cumulative distribution, of ages
of units at retirement. The points on the cumulative distribution were
converted into integers representing a cumulative distribution of
frequencies by multiplying each point by a common, appropriate multiple
of ten. Then the values of the cumulative frequencies were divided into
bloqks of numbers representing age intervals.

The age interval during which a unit of a vintage group 1s retired
was simulated by drawing a random number from a uniform distribution and
finding that block of values (of the cumulative distribution of
frequencies) which contained the random number. Additional random ﬁumbers

from a uwniform distribution were drawn and processed in a similar fashion

to simulate the retirement of all units in the vintage group. Since the
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retirement ratio for the kth age interval is

_ humber of units retired during the kth age interval

kX number of units surviving at the beginning of the
k' age interval

the retirement ratio for each age interval could be calculated. In this
manner, a set of retirement ratios, one for each age interval, for a
vintage group was -simulated.

Additional simulation runs using the same size vintage group
(generally the retirement experience of a vintage group was simulated 100
times) and based on the same Iowa type curve and average service life,
yield additional sets of retirement ratios, each set containing one
retirement ratio for each age interval. The retirement ratlos at each
age interval, one from each set, represent a‘sample‘(of_size equal to the
nunber of simulation runs) from the population of retirement ratios for
that age interval from a vintage group of thé given size.

The property group size was specified in terms of physical units
rather than dollars. The reason for using physical units is that the
age at retirenlent of any one physical unit is independent of the age at
retirement of any other physical unit. Dollars (of property) do not have
this independence unless each dollar represenﬁs exactly one physical unit,.

The retirement ratios at each age interval were arranged in ascending
order. A cumulative count of the ordered reﬁirement ratios at an age
interval yielded the cumulative distribﬁtion of retirement ratios at that
age interval. The cumulative counts at each age interval were converted
to cumulative percents to facilitate comparison of the simulated cumulative

distributions with the cumulative distribution of a standard distribution
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function., A flow chart of the computer program developed to simulate the

vertical distributions of retirement ratios is shown in Appendix A.
Simulation runs based on different parent populations (i.e., Iowa

type curve, average service life, and property group size) yielded addi-

tional sets of vertical distributions of retirement ratios.

Normal Approximation

The simulated, vertical distributions of retirement ratios were
plotted on both rectangular co-ordinate graph paper and normal probability
paper. The cumulative distribution points for each age interval plotted
on ﬁormal probability paper lie closely about a straight line, except the
points for the early and late age intervals. Hence, the normal distribu-
tion appeared to be a likely candidate for representing the vertical
distribution of retirement ratios at an age interval.

For a specified Iowa type curve, average service life and property

group size, let

th

I.. =1 if the 3% unit of the i°® simulation run is retired.

ijk
. th .
during the k¥ age interval

= 0 otherwise

Mijk =1 if the jth unit of the ith simulation run is retired
after the kth age interval
= 0 otherwise
- . tho . .th . . . .
Zijk = 1 4if the j unit of the i simulation run is retired
before the kth age interval

0 otherwise

simulation run index number

=1,2, ¢, I

He
I
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J = property unit index number
=l’2’o..’J
k= ége interval index number
=1,2,° ¢ * K
. . th . .th
Tk = retirement ratio for the k  age interval of the i
simulation run
Then J
z Li'k
., = J=1 ’
ik J J
XL, + ZM.
5=1 ijk 5=1 ijk
- Li'k
o+
Live ™ Mg
where
J
L., = ZL..
ik 521 ijk =
J
M .= ZM.
i-k =1 ijk
It
rm(Lijk =1) =03 3=1,2 " ° J5di=1,2,"" "1

Pr'(Mi,jk;-l):C,;j:l’e’.- *y J;i:l"g,...,I

=1,2, ¢y Jd31=1,2,°° °, 1

1
'_l
p—
1
Q
X
s
[\
|

Pr (2, g =
the Li-k’ Mﬁ-k’ and Zi-k are each binomially distributed and collectively
they form a multinomial distribution; Ck’ Cé, and Cﬁ are the corresponding
probabilities of the multinomial distribution.

The cumulative distribution of Tsieo for some specified k, can be

obtained by calculating the probabilities
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ST)
+
Lk Mﬁ-k

as the dummy variable T is varied from zero to one, the range of a retire-

ment ratio. A more useful form of the above expression is

I,
ik <o . <o:
Pr (=51 ) = Pr(ly,y ST Iy, + T .)
ik ik :

. _ <
Prl (1 T)Li,k T M 07
The mean of the expression
[(x - T)Li.k - T Mi_k]
is the expected value of the expression. Therefore

E[(1 - T)Liok] - E[T M ]

E[(L - T)Li.k - TM ]

1l

(1 - T)E(Li.k) - T E(Mi.k)
since (1, p. 32):

1. The expected value of a sum (or difference) of two variates
or functions is the sum (or difference) of the expected
values of the separate parts.

2. The expected value of a constant times a variable is the
constant times the expected value of the variable,

1) and M,

ik ik

a variable which is binomially distributed is usually expressed as (1,

4

are, individually, binomially distributed. The mean of

Beth

p. 35)
po= np
where
n = number of independent trials and is analogous to J
p = probability of success on any one trial and is analogous to
Ck and Ck

Therefore
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E(L, =JC

1°k) k
= /
EQM,, ) = J 0

where, as mentioned above

- = 3

Cyo Pr(Lijk 1)
/ - = e

Cy 1>r(Mijk 1)

Then
— 4
E[(L - T)Li,k -TM ] (r-1)7 C, =TI
The varlance of the expression
| - T)Li.k - T M L]
is the expected value of the square of a similar expression but where
the mean of each variable is subtracted from the variable.
var[(1 - T)L;,q = T M, ]
= 2
= E{[(l - T)(Li'k - “'k> - T(Mi'k = M}é)] }

where
by = BTy )
b = B0 )
Then
var[ (1 - T)Li-k - TN, ] |
5t - 2 p - ) 0Ly - u)?

= 2(T)(l = T)(Li'k - ”’k)(Mi-k - IJ‘k)] .
= (l = T)2 E[(Li‘k = l-l'k)g] + lIzE[(Mi.k - U’k)z:l
-2 - MLy - w0y - w)]

The variance of a binomial is (1, p. 35)

2
MQ"E(Y"IJ:)

= npq
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i

n,p = as previously defined

"

a=1-0p

The covariance of two of the variates of a multinomial is (1, p. 50, 5k4)

=T BPoPo1
where
plO = probability of the event yl occurring and is analogous to
Cx
Pop = probablility of the event Yo occurring and is analogous to
s
Cye
Therefore
2. _
E.I;(Li'k - U'k) 1=4J Ck(l - Ck)
_ 2. ’ /
E[(Mi‘k lJ'k) ] J Ck(l - Ck)
- - ’ = e 4
E[(Li'k ll'k) (Mi°k Ulk) J Ck Ck
Then

var[(l - T)L; , - T LA
= (1 - T)2 J Ck(l - ck) + 72 Clé(l - cl;)
+20 (1L -T) J Cye 01;

Since the multinomial distribution is.well approximated by the normal
distribution, at least for non-extreme parametric values, the linear
combination of multinomial counts, (1 - T) L - T M., will also be
approximated by the normal distribution; it is to be expected that this
linear combination will be more nearly normal than the ratio

Ljay/ (By e = M. )+ The distribution of the ratio is therefore approxi-

mated using the approximate normality of the linear combination:
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Li'k <

T)
My

Pr (
Lok

Pri(l - D)Ly, - T M o = 0]
Pr[N<M: 0) < O]
Pe{N[(L -T) J ¢, -TJ cl;, {1 - T)2 J Ck(l - ck)

’ _ ot - /1/2 <
+ 7 5o/~ /) +2n(1 - 1) T¢ ¢3Y?] S o)

IIe

Iie

A digital computer program for computing the points of the normal
cumulative distribution, based on an approximation by Hastings (12,
D. 168); was obtained from the Iowa State University Statistical
Laboratory - Numerical Analysis and Programming Section, Ames, Iowa.
Utilizing this program and the theoretical values of Ck and Cé (based on
the Iowa type curve and average service life) and the vintage group size,

a pseudo-normal, cumulative distribution of retirement ratios at each age

interval was calculated (see Appendix B).
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RESULTS OF THE INVESTIGATION

The Tirst program to calculate the points of the pseudo-normal,
cumulative distributions utilized theoretical Ck and C£ values which
were dependent upon the chosen vintage group size. Plots of the pseudo-
normal, cumulative distributions on rectangular co-ordinate graph paper
did not satisfactorily match with plots of the simulated cumulative
distributions; the general shapes of the pseudo-normal, cumulative dis-
tribution plots were appropriate but the (horizontal) locations were not.

The C, and Cé values were calculated in the following manner in the
first program. The "theoretical” number of units surviving at each age
from a vintage group of the chosen size (for the chosen Iowa type curve

and average service life) were calculated from a tablel of the theoretical

percent surviving; all values were rounded to the nearest whole unit. Then

¢, = P.C‘(Lijk =1)
_ number of units retired during age interval k
vintage group size
4 = =
Cye ET(N%jk 1)

_ nunber of units retired after age interval k
vintage group size

Thus, these estimates of the theoretical C, and Cﬁ were dependent upon
vintage group size, curve type and average service life rather than just

the curve type and average service life.

lScigliano, J. Michael, Graduate Assistant in the Department of
Industrial Engineering, Iowa State University of Science and Technology,
Ames, Iowa, Tables of the theoretical percent surviving, to six decimal
places, ab 1% intervals of an average service life of 100 years for the
Towa type curves based on the criginal data of Robley Winfrey. Private
communication. 1965,
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A minor modification of the first program, calculating Ck and Cé on
the basis of a "parent population" of 100,000,000 units rather than the
chosen vintage group size, yielded more successful results. Althoush the
theoretical "parent population" is not limited to 100,000,000 units, the
amount of error introduced in estimating Ck and Cé by the use of such a
large number of units is less than when a small vintage group size is
used (and is probably negligible).

Retirement ratios of the forms (1) zero divided by zero and (2) zero
divided by a positive number, occurred in the simulations of the retirement
ratios and were assigned a value of zero. The first form arose whenever
the age interval during which the oldest unit of a particular sample (a
particular simulation run of the retirement experience of the vintage
group) was retired was, say, k and the age interval during which the oldest
unit of some other sample was retired was, say, k + L. The retirement
ratio from the first-mentioned sample for the (k + l)st age interval would,
then, have %b be of the form zero divided by zero. The second forn
occurred whenever one or more units were surviving at the beginning of an
age interval and no units were retired during that age interval.

Retirement ratios of the form zero divided by zero could not occur in
the pseudo-normal program because the computer was programmed to stop
whenever the number of units surviving at the beginning of an age interval
was zero. A retirement ratlo of the férm zero divided by a positive number
could possibly occur in the pseudo-normal program only in the early age

intervals when the theoretical values of Ck and Cé were



Cp =1
The pseudo-normal program assigned a value of one to all of the cumulative
probgbilities for that age interval,

PriN(u, o) S 0] =1 o<rm<1

The pseudo-normal program computed the values of the cumulative

distribution for values of T bebween zero and one in increments of 0,0l.

A large sample size coupled with a small Ck value, a large Cé value, and

a delta T of 0.0l resulbted in very few cumulative distribution vaiues other
than zero or one, if any. A larger number of non-zero, non-one cumulative
distribution values could have been obtained by incrementing T by 0,001

Or an even smaller amount.

The vertical distributions of retirement ratios at each age interval
were simulated (and the corresponding pseudo-normal, cumulative distribu-
tions calculated) for only a small number of the possible combinations
of curve type, average service life, and sample size. Representative
plots, on normal probability paper, of the simulated cumulative distribu-
tlons of retirement ratios and of the pseudo-normal, cumulative distribu-
tions of retirement ratios are shown in Figures %9a, 9b, 10a, and 10b for
an Iowa L3 - 10 and in Figures 1lla, 1llb, 12a, and 12b for an IoWa Rl - 25,
For both the L, - 10 and Rl - 25 simulations, the sample size (vintage

3

group size) was 100 and the retirement experience of a sample was simulated

100 times.

A few general comments can be made from a visual inspection of the

probability plots (including those not shown herein):
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Figure 9a. Simulated cumulative distributions of retirement ratios for I, - 10

3
O - age interval 1.5 - 2.5 years
0O - age interval 4.5 - 5.5 Srears
A - age interval 7.5 - 8.5 years
O - age interval 10.5 - 1l.5 years
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Figure 9b., Simulated cumulative distributions of retirement ratios for L, - 10

3
O - age interval 13.5 - 14,5 years
0~ age interval 16.5 - 17.5 years
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Figure 10a., Pseudo-normal cumulative distributions of T for L, - 10

3
O - age interval 1.5 - 2.5 years

0 - age interval 4.5 - 5.5 years
A~ age interval 7.5 - 8.5 years
O - age interval 10.5 - 1l.5 years



Cumunlative Probability, Percent



Figure 10b. Pseudo-normal cumulative distribution of T for L., -~ 10

3
O - age interval 13.5 - 1k4.5 years
0 - age interval 16.5 - 17.5 years
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Figure lla.

Simulated cumulative distributions of retirement ratios for R

o -
-
A -
O_

age
age
age

age

interval 4.5 - 5.5 years

interval 12.5 - 13.5 years
interval 18.5 - 19.5 years
interval 2k.5 - 25.5 years

1

- 25
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Figure 1lb. Simulated cumulative distributions of retirement ratios for Rl - 25

O - age interval 30,5 - 3l.5 years
1 - age interval 36.5 - 37.5 years
) - age interval 44.5 - 45.5 years



sl

,L»
1
I
i

[

it
sk ko

11,

i

0TABY JUSWSITISY

ty, Percent

Cumulative Probabili



Figure 12a.

Pseudo-normal cumulative distributions of T for Rl -2
¢ - age interval 4.5 - 5.5 years

O - age interval 12.5 - 13.5 years

/A - age interval 18.5 - 19.5 years

(O- age interval 24.5 - 25.5 years
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Figure 12b.

Pseudo-normal cumulabtive distributions of T for Rl

G - age interval 30.5 - 31,5 years
0 - age interval 36.5 - 37.5 years
O -~ age interval 4h.5 - U5.5 years

- 25
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The slope of a straight line drawn through the points for an age
interval reflects the standard deviation of the sample and
increases as the age interval index number increases (for a given
Iowa type curve, average service life, and sample size).

The slope of a straight line drawn through the points for a given
age interval decreases as the sample size increases (for a given
Towa type curve, and average service life).

three most important results of the investigation were:

The variance of the vertical distribution of retirement ratios
does not remain constant from age interval to age interval.

The points of the simulated cumulative distribution of retirement
ratios at each age interval, plotted on normal probability paper,
lie along or nearly along a straight line, except for the early
and late age intervals,

Plots of the pseudo-normal, cumulative distributions of retirement
ratios at each age interval match satisfactorily, visually, with
the plots of the simulated cumﬁlative distributions of retirement

ratios at each age interval, except for late age intervals.

The first result indicates that the assumption of homoscedasticlty

(constant variance), a necessary condition if the unweighted least-squares
method is to yield linear unbiased estimators which have minimum variance
amongst the class of linear unbiased estimators of the polynomial coeffi-
cients, is invalid. The second result indicates that the vertical
distribution of retirement ratios at an age intérval is approximately a
normal distribution. The third result permits the computation of an esti-

mate of the variance of a retirement ratio, by means of the pseudo-normal



87

approximation, when only the vintage group size and estimates of Ck and

! are known.

Cx
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A PROCEDURE FOR FITTING A POLYNOMIAL TO RETIREMENT RATIOS

A procedure for fitting a polynomial to the retirement ratios
calculated from original data is developed in this section. The procedure

1s based on the least-squares princilple.

Assumptions
A number of the assumptions necessary to make an actuarial life
analysis have already been presented in previous sections of this
dissertation. The procedure herein developed for fitting a polynomial to
the retirement ratios is dependent on the above mentioned assumptions plus
a few additional assumptions, all of which are listed below:
1. Basic assumptions of life analysis:
a. The mortality behavior of the property follows some 'law of
mortality" expressible as a function of time,
b. The past mortality behavior of a property is indicative of
the expected future mortality behavior of the property.
2. Assumptions concerning the property data used:
& The data avallable 1s from the historical records ol the same
property or a similar property.
b. A lifebanalysis based on physical units is meaningful.
c. Sufficient data iﬁ a usable form are available to make an
actuarial life analysls study.
d. The data set selected for analysis is composed of homogeneous
units (both within and between vintaze groups) which follow

the same 'law of mortality".
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Assumptions in ldentifying the law of mortality:

S

The "law of mortality" is better represented by a smooth
curve fitbed to raw data points than by unsmoothed, raw
data points.

The 'law of mortality"” can be adequately represented by a

polynomial expressing the relationship between retirement

ratios and age intervals.

Asswmptions of the method of fitting a polynomial to. the retire-

ment ratios:

a‘.

The age interval of retirement of those units already
retired 1s determined without error.

The regressilon of retirement ratios on age intervals is
linear in the polynomial coefficients.

The retirement ratios calculated from the data of a given
vintage group are independent of each other (i.e., the
assumption from (16, p.‘383): "The deviations ys - E(y1xj)
are mutually independent").

The vintage groups contributing mortality experience to the
data set are independent, random samples (but not neces-
sarily of the same size) from the same pafent population of
physical units.

Each retirement ratio 1s a random sample from an approximately
normally distributed parent population of retirement ratios
with parameters (1) curve type, (2) average service life,

(3) sample size, and (4) age interwl, and the distribution
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of the parent population can be approximated by a pseudo-
normal, cumulative distribution (the assumption that the
distribution is normal is not needed to develop the procedure
but is needed in testing the significance of the nth degree
term of the retirement ratio polynomial).

f. The expected value of a vertical distribution of retirement

ratios is a constant for a given curve type, average service life,

and age interval, regardless of sample size.

Development of Procedure
Under the assumptions of the method of fitting a polynomial to the
retirement ratios (above), the principle of least-squares yields certain
estimators of the polynomial coefficients. The properties of These
estimators are dependent upon the assumptions that can reasonably be made
about the s and the variances of the Typee Let

population retirement ratio for the kth age interval

p’k=

Tig = sample retirement ratio for the ktn age interval from the
th . '
i7" vintage group

o?k = variance of the population of retirement ratios for the
. .
k“h age interval for samples of the size of vintage group i

2 N N 2

Oix = sample estimate of 05y

r,, = & weighted average (over all i) of the Xy

Because of computational considerations, the Top for each age interval must
be combined into a single T oo Since
E(rik> = p'k; i = l’ o o o, I

2
Iik

I

var(rik)
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r s the single-valued, least-squares estimator, is (11, p. 12)

I
LW Tiy

=

™M H

Wik
2,2 v .
_2 (/0530755
T
2,2
o /bik

I 2
E (L/o5 )7y

I
2
z l/sik

o = a constant of proportionality which may be used to adjust the
magnitude of the relabtive welghts
Substituting the sample esbtimate of G?.k’ afk, vields
I
2
_ (1/6%3 )75

ok I
;\2
z Lﬂjik

r

Then, the least-squares expression to minimize is (11, p. 88)
Min 1/2]z§w 7. - (a+bx_ +cxo + o+ o)F
. o &k i
asb,cyete.

where

}
™M H
=
a

Differentiation of the least~squares expression ylelds the normal

eguations, of the form
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X 2
Zw,lr, - (a+bg +eg + 0 ]=0

X
2 . L] o =]
Zwr s lr - (a + bx, +oex Jx =0

X
Z'w_k[r_k - (a + bx, cxi oo . ']Xk =0

ete.

. 2 ~2 e s 2 .
Replacing Oit by G410 the sample_esblmate O 04y the first normal

equation becomes

or

XTI 2 5
ZZ lﬁjik[r.k - (a + bxk + cx +e 0 4)]=0
I

2

KT T /65, r.
'\2 —-.———i%{-——&-ls_ 2 L] [ ] L[] =

PHDY 1/6ik[ = (a + bx, *+ex )] =0

N

= 1/0'ik

P + 2 o e o
DX W Fopg S8 2 W Th LW, X te LW, X T

and similarly for the other normal equations.

The maximum-likelihood estimators of the polynomial coefficients,

under ‘the additional assumption

iy ~ Wuys 059)

vields the same set of equations as the principle of least squares (see

Appendix C).

A theorebical procedure for fitting a polynomial to the retirement

ratios is:

L.
26

3.

Compute each Tipee

~2 .
Compute S for each ik

Fit a polynomial to the r., by the weighted least-squares method,

tik
. : . . = /aR
where the weight to be given to each Tiy 18 Weq lﬁsik.
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The variance, 8‘2‘ K obtained by the pseudo-normal, cumulative distribution
is a function of both the vintage group size at age zero, Ji » and the
sample retirement ratio, Tiyo @S an estimate of the mean population
retirement ratio, M o If a betbter estimate of e could be found, a better
estimate of cyiek could be calculated.

Assumptions 3a, ‘3b, and 4f indicate a way of obtaining a better esti-
mate of b to use in computing 3?_1{‘ Firstly, since each X350 for a given
"k, is assumed to be an estimate of Wy » SOMe average or weighted average
value of the Tips S8Y ?_k, should "pe a bebter estimate of by, » Secondly,
since the "law of mortality" is assumed to be representable by a smooth
curve, and in particular a polynomial function, the r;_k interpolated from
a polynomial.function fitted to(aVerage or welghted average values of the
i should be better estimates of the oy than the L
Several methods of obtaining the ?_k are available; which method is
the "pest" has not been established. The chosen method ubilizes a pre-

Liminary approach to the over-all problem of fitting a polynomial to the

retirement ratios (see Appendix D) and is as follows:

a2 ook

1. Compute T = m
L .. +M

2. Compute ¥, = = e~ £

ra (1 -7.)

3. Fit a polynomial to the fik by the weighted least-square method,
where the weight to be given each ?,k is 5,0

4, Interpolate the necessary values of ':E".k from the pblynomial of

(3).



Oh

The Procedure
The over-all procedure developed for fitting a polynomial to the

retirement ratios is, then,:

L
2 _ 0 .km
1. Compute R W T for all k.
cok . ck
o~ Lo .k + MQ -k
2., Compute W , = g———=—, for all k.
nk r.k(l - r.k)

3. Fit a polynomial to the ?“J’k by the welghted least~sguares method,
where tae welgat to give each ?-k is vgvj_ko

L. Interpolate the ¥, from the polynomial (3).

5. Compute 8‘§k for each Ty from the pseudo-normal, cumulative
distribution based on J; and C, and Cy (from 'f,k).,

6. Fit a polynomial to the Tig by the welghted least-squares method,
where the welght to give each rsy 18 l/cik.

A procedure equivalent to step (6) is to fit a polynomial to the

A
welghted average retirement ratio, Loy at each age interval by the

welghted least-squares method, where

I
2
y oL Z(l/oik)rik
-k I
2
Z(1/55)
Gik = gample estimate of the wvariance of Lope computed from the

pseudo-normal, cumulative distribution
A
and the welght to be given each o is
I
_ 2
Wy Z(l/oik)
A general flow chart of a computer program to implement the procedure

is shown in Appendix E.
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Conments

. - ~ /'\2 .
An estimate of the variance of each i Ogp2 can be calculated in

the following wanner:

l. Generate the pseudo-normal, cumulative distribution of iy

based on Ji(the size of vintage group i) and C, and Qé

from ?:k.

computed

2., Compute the area above the cumulative distribution versus T

curve (area above the curve and below a horizontal line

representing a cumulative probability of one).

3. Compute the area above the éumulative distribution versus T2

curve.
L, The difference between the area computed in (3) and the
square of the area computed in (2) is an estimate of 5

The proof of (4 ) is as follows.
2
)

]

var(t) = E(T - yu
B(1% - 247 + %)
£(1°)
2(?) - 2

B(r%) - [E(1)1°

I

il
1l

[»)
2uB(T) + p°

1l

i

ik*®

where T is a dummy variable representing the values which an riy can take

on. The area above the cumulative distribution versus T curve, computed

on the basis of horizontal strips, is the integral of the height

strip, which is T, times the width of the strip, which is dF(T).

I

Gr(T) = £(T)ar

and therefore,

Il

Ares,

L
T £(T)dr
g =22

of the

But



The expected value of T is, by definition,
1
B(T) = [~ T £(T)aT
° 2
The area above the cumulative distribution versus T curve 1s, similarly,

ol 2
AreaT2 = Jo T

£(T)ar
and, by definition,
2 1.2
= T £(T)d
E(T7) fo T £(7)arT
Therefore

B(T°) - [B(T)°

var(T)

1l

2
AreaT2 - (AreaT)

As mentioned previously, the plots of the pseudo-normal, cumulative
distributions matched satisfactorily, visually, the plots of the simulated
cunmulative distributions, except for the late age intervals. It should
be noted, perhaps, that the Poisson cumulative distributions were
generated for the late age intervals and that they matched satisfactorily,
visually, the corresponding simulated cumulative distributions. This
result was not utilized in the development of the polynomial fitting
procedure.

A computer program for fitting a polynomial to a set of observed
values by the weighted or unweighted least-squares method was obtained
from the Iowa State University Statistical Leboratory - Numerical Analysis
and Programming Section, Ames, Iowa. The program uses orthogonal
polynomials to obtain the polynomial coefficients of the least-squares
fit. The program requires (1) that the values of the independent
variable be equally spaced and (2) that only a singlé value of the depend-

ent variable be paired with a single value of the independent variable.



o7

The first requirement prohibits the use of the retirement ratio(s) for
the age interval O to 0.5 years. If there are multiple values of the
dependent variable for each value of the independent variable, the second
requirement forces the programmer to combine such multiple values into a
single value before using the orthogonal polynomial program.

The method of orthogonal polynomials facilitates testing the signifi-
cance of each additional degree. The program obtained from the Statistical
Laboratory computed, and printed out, the regression sum of squares, the
remainder sum of squares, the regression mean square, the remainder mean
square, the total sum of squares, and the degrees of freedom associated

with eacn. Thus, an F test of the form

R. - R
F _ L 2
vl,vz,a R27v2
. th
R, = remainder sum of squares of the (n - 1) degree
polynomial
R2 = remainder sum of squares of the nJGh degree polynomial
= £ -
v; = degrees of freedom of (Rl R2)
=1
v, = degrees of freedom of R2
= (number of observed values) - n - 1
o = probability of a type I error

can readily be performed to test the significance of adding the nth degree
term,
An analyst may wish to test the normality of the retirement ratios

(at an age interval) obtained from historical property data. A method of
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testing the hypothesis

{r,} ~5u, o) 1=1,2, « 0,1

{Yi} = The ordered set of observed values of a sample (such as

the retirement ratios at a particular age interval)

was developed and is presented in Appendix F. A severely limiting condi-
tion on the application of the method to retiremeﬁt ratios is that the
sample of retirement ratios to be tested must have come from vintage
groups of the same size,

If some sy is of the form zero divided by zero, the computer program
to implement the procedure does not attempt to compute the corresponding
8§k (step 5 of the procedure); the part of the program which calculates
c??k skips that age interval (and all subsequent age intervals of the same
vintage group) and proceeds to start calculating the Gik for the next
vintage group. In essence, this process assigns a value of zero to both
Loy and Wige when i is of the form zero divided by zero.

An interpolated ?-k (steﬁ L of the procedure) may be equal to zero
(i.e., a retirement ratio of the form zero divided by a positive constant).
The variance of the Tiges 8§k, is theoretically zero when ?:k is zero and
the weights Wy Wops * 0 %5 W approach infinity. A digital computer
cannot calculate the value of l/O; hence, the computer was programmed té

rint out a code indicating that an ;:k of the form zero divided by a
constant had been encountered and then to proceed to computations involving
?:k +1° Some arbitrary value must be assigned to each of the Wi
(i =1, « » o, I). A possible alternative would be to assign a value (to

such Wik) which is equal to the largest value of any other Wiys OF perhaps

a value up to twice as large as the largest value of any other Wepos The



99

reason for recommending this alternative is to prevent one (or a limited
number of) Lo value from dominating or inordinately influencing the
calculation of the polynomial coefTicients in step (6). No study has been

made of what might be the relative magnitude of an appropriate value to
o f=]

assign to such w.
S b]' %] lk.
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DISCUSSION

Two slightly different procedures for fitting polynomials to retire-
ment ratios are currently in use. A third procedure is presented as a
preliminary approach in Appendix D and is utilized in the procedure
developed in this dissertation. When there is more than one retirement
ratio for an age interval, because of the method used to obtain the
original life table, all four of these procedures combine the several
retirement ratios for an age interval into some single, composite retire-
ment ratio. Three of the procedures then fit a polynomial to the retire-
ment ratios by minimizing the sum of the 'weighted" squares of the devia-
tions of the composite retirement ratios from the regression curve; the
other procedure gives each squared deviation equal weight.

To facilitate referring to the various procedures, the following
designations will be adopted:

1. Procedure A, a currently used method, is

Min {Ig[‘? (a + bx_ + cxo + e
e X, Fex .o )1}

a,b,c,etc.
where
%ik = g composite retirement ratio for the ktﬂ age interval
I
_ B Tiy
I ~
Z Wy
s . th . § .th
rip = retirement ratio for the k  age interval from the i

vintage group
Rk
Six



101

q

. .th . . .
R.. = nuwiber of units from the i = vintage group retired during
th . _
the k¥ age interval
. .th . .o
S... = number of units from the i vintage group surviving at

the begianing of the kth age interval

¥y = 105,

@?k = the conditional variance of e (conditional upon the
antor OF
denomiantor of r., Sik)
_ B
Sik
. . - . th .
3k = population retirement ratio for the k  age interval
Qe =L B
Therefore

I
~ 2(8;5/ B0 )7

I
Z 8/ By

Six Tik
T
5

MH

Sk

since Ek and Qk are constants for a given kand 1 =1, 2, = * *, L

polynomial coefficients

I}

a,b,c,etc.

g

Procedure B, a currently used method, is

i

kth age interval index nunber

K 2
. o~ 2 .. W2
Min . {z S'k[r-k - (a + bx, +oex, * 0173
a,b,c,ete.

where
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T, @ Dy ¢, and x_are as shom in (1), above.

Procedure C, the preliminary approach suggested in Appendix D, is
K o R 2 2

Min {z W [Top - (a + bx +ox + o - )1°3

a,b,c,ete.

where

S
W,, =5 —
kK Fo(1-F,)

= l/g-%k
T = Var(%.klsik)

ek

S'k

and. perhaps , 1ls best described as a weighted sum of condiftional
variances. P_ and Q’k must be replaced by their sample estimates,

k
and (1 - %vk)’ respectively, since they are not known. Hence

~
r.

k
. rak(l - r.k)
k S

RS

'k
S.ye %"k’ a, b, ¢, and x_ are as shom in (1) and (2), above.
Procedure D, the procedure developed in the preceding section, is

K 2 2
iin {x W [T (2 + bx, + cx *o 173
a,b,c,ete.

where
I
_ N2
Vo T Z l/crj_k /
8?‘ x = estimate of the variance of i obtained by means of the
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psuedo-normal, cumulative distribution computer program

and based on (1) C,_ and C; values calculated from the

I3 !

preliminary £it of a polynomial to the retirement ratios

and (2) J5
L
_ 2 Vit
o 77T
2 Wi
-
Wik = l/cik

a, b, ¢, and x,_are as shown in (1), above.

Three basic assumpblons of all four procedures are:

l. The rik

2. The age intervals during which the units are retired are deter-

are independent random samples,

mined without error, and
3,‘ The E(rik) is constant for a given kand 1 =1, 2, « s «, I,
From a practical point of view:
l. The first assumption appears to be valid for a given k -and
i=1, é, e ¢« ¢, T but not valid for a given 1 and

k

1,2, ¢+, K.

2. The second assumption is probably valid.

3. The third assumption appears to be invalld, in general.

The four procedures will be discussed in this séction in terms of
the properties (unbiasedness and minimum variance) of:

1. The estimators of the composite retirement ratios, and

2. The estimators of the polynomial coefficients.

N

An additional topic which will be briefly discussed in this section is the

effect o using dollars rather than physical units (as the measure of the
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amount of property) on calculating estimates of the variances.
The criteria for evaluating each procedure, in a qualitative sense,
are: |
l. Does the procedure utilize unbiased estimators and, if so, in
what sense are these estimators unbiased?
2. Do these estimators have any good variance properties?
2. Do the estimators cdincide with the estimators obtained by the

principle of least-squares?

Estimators of the Composite Retirement Ratios
Procedures A, B, and C combine the Ty for an age interval into a
single composite retirement ratio, %1k’ in the same manner.
I
X843/ BT 5

kI
T 85/ By

T

T
% 85x Tix

MH} W

Six%

Since:

l. EFach r, is assumed to be an unbiased estimator of 3k’ and

k

- 2. The conditional variance of each rs can be assumed to be
known because Sik is known and Ek and Qk cancel out,
the %ﬂk could be said to be linear unbiased estimators of B having the

minimum variance of all linear unbiased estimators. Graybill provides

the necessary theorem (9, p. L409):
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Theorem 18, ll. Let e be an unbiased estlmator of 6, and let the
variance of e be denoted by ci Let e be another unbiased
estlmator of e, and let the varilance of e be denoted by cg Let

e and e be uncorrelated. Then the best (minimum-variance)

1
llnear unblased estimator of 6 is
2 A 2 A
p T 8 o 8
e:
2 N 2
91 7 9%

Repeated application of Theorem 18.11 yields

I
2y A
) Z(lﬂji) 91

D>

I

L 1/o’
Hence, on the assumption that the conditional variances are the correct
variances, the §ik are best linear unbiased estimators of the P . When
Sik is large and rij small, the conditlonal variances will very closely
approximate the correct variances. The least-squares estimator of 3& is

(11, p. 12)
§ - Z Wiy Tiy
T
2 Wiy
where

W - 2/2
ix 9 /%ix

a constant of proportionallty which may be used to alter

a
il

the magnitudes of the wik

Hence, substituting §€k for oik

/J)r

I
/ Oix

A
g =

(
I
o



I
g ksl
) 2(L/575y) =y

T
2
= L/65,

and, therefore, ?;k is of the same form as the least-squares estimator of

Bk with the conditional variances used as the variances of the Lipee
Procedure D utilizes a preliminary polynomial fit of the retirement
ratios (by procedure C) to obtain "better” estimates of the C, and cﬁ used
to calculate Sik‘ If, because of these refined estimates of Ck and Cé, one
is willing to assume that the ka are the actual varlances of the Tk then

the r , are best linear unbiased estimators of the B (9, p. 409). When

k

the Eik are considered as sample estimates of the variances of the Tiyes
very little can be said about the unblasedness and variance properties of

the T, as estimators of the Pk' The r,, are of the same form as the

least-squares estimators of the Pk regardless of whether the Sik are con-

sidered as the actual variances or as sample estimates of the variances
of the Tipee The maximum~likelihood estimators of the Ek, assuming the Top
are distributed N(Mk> Gik)’ are identical to the least-squares. estimators.
If the additional assumptlion is made that the Ty are distributed N(Mk’
cik), then each r , is distributed N(pk, o,k) (11, pp. 29-30) where

2 _ 1

9k T T 5
z l/oik

Estimators of the Polynomial Coefficients

e

The polynomial fitting portion of procedure A assigns equal weight

to the ¥ According to Guest (11, pp. 88-89), the estimators of the

ko
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polynomial coefficients obtained by solving the set of equations

g Kk[xk - (a + bx, * cxi +oe e )] x =0
where

{A_} = set of known constants
will be unbiased. Therefore procedure A does yleld unbiased estimators
of the polynomial coefficients. When the variances, o?k, are not equal
to a constant, then the weights should be

) = (1/65,)
Hence, the estimators of the polynomial coefficient do not have good
variance properties., The estimators of the polynomial coefficients are
not the same és the least-squares estimators since procedure A sets kk
equal to a constant and the principle of least-squares sets xk equal to
l/b?ko

Procedure B weilghts each ?ik by the correspounding S°k' The inverse

of S°k’ l/Sok, might be considered as an estimate of the varlance of %ik’
but it is not the best available estimate; 1/S;, is not even a correct

estimate of the conditional variance. The appropriate estimator of the

variance g, consistent with the variance G5y 18

RE (5
R var(r.klsik)

Pﬁ%@

S-k
Procedure B utilizes unbiased estimators of the polynomial coefficients if
the Sik are assumed to be known constants in accordance with the conditional

variance assumption. These estimators should have somewhat better varlance

propérties than the estimators ubilized in procedure A because l/S_k is a
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better approximation of var(?ﬂklsik) than the constant used in procedure A.
The estimators of the polynomial coefficients are not the same as the
least-squares estimators to the extent that l/Sok is not the same as
var(?iklsik).

The welghts used in procedure C to obtain the estimators of the
polynomial coefficients are at least in agreement with the conditional

variance assumption.

=
I

e = l/var(r.klsik)

S

RN

R
?:k(l -

k>

~

W’k is the inverse of the sample estimate of the varlance of ?’k because
. .n.

3k and Qk are not known and must be replaced by thelr sample estimates
?ik and (L - ?ik). The estimators of the polynomial coefficients are not

necessarily unbilased since the ﬁik, where

@)= )
are not known constants. These estimators should have, perhaps, somewhat
better variance properties than the estimators of elther procedure A or B.
These estimators (procedure C) are of the same form as the least-squares

estimators since

Dyl = (7

(1/5%,)

Procedure D yields best linear unbiased estimators of the polynomial

1l

coefficients 1f the 8§k are assumed to be the actual variances of the rik'
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I
z(x/aikﬂrik)]
I
= 1/ 8?1«:

var(r_k) = var[

1 2 2 2 2
(T——————) [var(rlk/olk + r2k/c2k toeos e rIk/UIk)]

2 185
L 2., 1.2 [ L2 L
= (3 ~ )T var(ryy) + (5-)° var(ry) +
T1/eg, ik O2x

+ () var(rp,)]

_ 2rrl \2 2 Ly2 2 . .
= (3 Az)[(Na)leJ’(Az Tox *
b} l/cik Tik Ook

1

+._1'__.)

2
1%

2 2
orgd

I
- B,
T 1/5

ik

I}

L/

Under the (additional) assumption of normality, the estimators are
unoiased and have minimum variance amongst unbiased estimators (9, p. 117;

11, pp.'88-89). If the assumption

A—

Gy = var(ryy)
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is not made then the estimators of the poliynomial coefficlents are not

necessarily unbiased and do not have optimum variance properties. The

form of

these estimators is the same as the form of the least-squares

estimators,

Ta swmmary:

1.

Procedures A, B, and C utilize best linear unbiased estimators
of the composite retirement ratios if the conditional variances
dik are assumed to be the actual variances of the T

Procedure D utilizes best linear unbiased estimators of the
composite retirement ratios if the Eik are assumed to be the
actual variances orf the Tipee

Procedure A utilizes unbiased estimators of the polynomial
coefficients; these estimators are not of the same form as the
appropriate least-~squares estimators and probably have relatively
poor variance properties.

Procedure B utlizes unbiased estimators of the polynomial
coefficients if the conditional variance assumption is made;
these estimators are not of the same form as the least-squares
estimators, but should have somewhat better variance properties
than the procedure A estimators.

The estimators of the polynomial coefficients utilized in
procedure C are not necessarily unbiased but should have somewhat
better variance properties than the procedure A and procedure B

estimators; these estimators are of the same form as the least-

squares estimators.

.
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6. Procedure D ubtlizes best linear unbiased estimators of the
. o s . ~2 N
polynonial coefficients if the Osy are assumed to be the actual
variances of the rik; these estimators are of the same form as
the least-squares estimators.

. . . e AL
are assumed to be distributed N(uk, Gik) and if &)

7. If the Tip
is assumed to be the actual variance, oik, then the estimators of
the polynomial coefficients utilized in procedure D are unbiased
and have minimum varilance amongst all unbiased estimators.

Procedure C utilizes weights of ﬁik based on the variances ?%k in
fitting polynomials to the %1k’ as previously mentioned. These variances
are conditional upon the denominators, Sik’ of the retirement ratios and,

when all Si are known, are variances of constants. Theoretically

k
the variance of a constant 1s zero. The extent to which this theoretical
consideration limits the usefulness of procedure C is not known,

The difference between the results that might be obtalned from the

practical application of procedures C and D is not known. ZEither C or D

should yield better results than either A or B.

Effect of Dollars on Computing Variances
The primary effect of using dollars rather than physical units on
variances, assuming that each physical unit costs more than one dollar,
is to decrease the magnitude of the variances. The problem which this
effect engenders is the calculation of extremely small variances., This
problem does not seem to arise in procedures A, B, and C since:

L. The variances gﬁk are never dlrectly computed, and

\
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2. The varlances S, and §%k are calculated directly from the raw

data.
- The varlance estimate used in Appendix D, Eik’ is based upon the

calculation of Area_ (the area above the pseudo-normal, cumulatlve distri-

o (
bution versus T curve) and AreaT2 (the area above the pseudo-normal,
cumulative distribution versus T2 curve). These areas, in turn, are based
upon the cumulative distribution generated by the pseudo-normal computer
program wvhilch utilizes the parameters: vintage group size, Ck and Cé. As
the vintage group size increases, the variance Bik decreases, and therefore
the amount by which T is incremented must also decrease or the variance
will appear to be zero. TFor instance, a weight (of the form Sok) of
1,000,000 corresponds to a variance of 0,000,00L. Hence, to obtain a 8§k
| of the same magnitude, T should be incremented by amounts of approximately
0.000,000,1 in order to obtain any accuracy in the estimate of Eikn The
problem then becomes one of computer time and the gquick determination of
the proper amount by which to increment T and of the first non-zero value
ol

Pr{N[(L - )3 ¢ - TJc), {(1-DTc(l-0)

+ 197 cg(l - cki) +21(1 - T)J Cyo ckf 1/2] < 0}

This problem does not appear to be insolvable.
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EXAMFLE

The procedure developed in Section VI was applied to a four vintage
group example. The amount of property in each vintage group was measured
in physical units and was determined by drawing a random uniform number
between 150 and 500; the sizes of the vintage groups were 462, 176, 348,
and 226 units. The retirement experience of each vintage group was simu-
lated on the basis of a Rl type Iowa curve and an average service life of
25 years (a flow chart of the simulation computer program is presented in
Appendix A).

A plot of the four rebirement ratios at each age interval (three at
the last age interval) is shown in Figures 13a and 13b. A. larger ordinate
scale is used in Figure 13a than in Figure 13p to avold crowding the
points close together. Age interval one is the age interval O %o 0.5
years, age interval two i1s the age iﬁterval 0.5 to 1.5 yearé, ete.

One of the retirement ratio methods of analyzing historical
data is to fit polynomials of up to the fourth degree to retirement ratios
of the form

-k L + M

cvk .o_k'_
by the unweighted least-squares method. The polynomial selected as best
representing the original data is generally the first, second, or third
degree polynomial. Plots of the second and third degree polynomials and

of the ninth degree polynomial (which is the highest degree polynomial

significant at the 0.05 level by the F test) are shown in Figures 1k and

15, respectively.



Figure 1l3a. Vintage group retirement ratios at each age interval for the example

O - vintage group I (462 units)

0 - vintage group IT (176 units)
A~ vintage group ITT (348 units)
O~ vintage group IV (226 units)
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Figure 13b. Vintage group retirement ratios at each age interval for the example

O - vintage group I (462 units)

1 - vintage group II (176 units)
/\ - vintage groap ITT (348 units)
O - vintage group IV (226 units)
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Figure 1. Second and third degree polynomial fits of the ?1k

O - second degree polynomial

[J - third degree polynomial
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Figure 15. Ninth degree polynomial fit of the k
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The orthogonal polynomial program, obtained from the Statistical
Laboratory, was used to fit the polynomials to the retirement ratios. This
program requires equal spacing of the abscissa values, hence, the retire-~
ment ratio for the age interval O to 0.5 years was not used as an input
value. All other age intervals were assigned an index number one less
than was previously assigned to them, so that age interval one represented
the age interval 0.5 to 1.5 years, etc. After this reassignment of index
numbers, each index number (k) was, numerically, midway between the
boundary years of age of the age interval it represented (i.e., a k value
of one represented age interval 0.5 to 1.5 years, etc.). The value of the
retirement ratio for the age interval O to 0.5 years was extrapolated from
the polynomial as one-half of the retirement ratio for a k value of 0.25,

a k value which is, numerically, midway between O years and 0.5 years.

The age intervals were then reassigned thelr previous index nunmbers
for plotting purposes, so thaf in the figures, an index nunber of one
represents the age iﬁté;val 0 to 0.5 years, an index number of two repre-
sents the age interval 0.5 to 1.5 years, etc.

The second degree polynomial does not fit the §{k very satisfactorily.
The retirement ratio values interpolated from the polynomial are too large
during the early age infervals and are zero from age inbterval elevén to
age interval twenty-one (these "zero" valued retirement ratios were
actually negative but were set equal to zero since, for practical purposes,
the amount of property cannot increase as the age interval index number
increases). The retirement ratios appear to be too small during the late
age intervals; however, the calculated percent surviving at age 50.5

years (the age at the end of the maximum age interval of the theoretical
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R, - 25 curve) was only 0.019%. The survivor curve calculated from the
second degree polynomial (not shown) drops sharply from 100% at age O to
66.2% at age 9.5 years, is a horizontal line from age 9.5 years to age 20.5
years, and then drops sharply again.

The third degree polynomial fits the ?ﬁk somewhat better than the
second degree polynomial. However, the interpolated retirement ratios are
zero for the first few age intervals (they were actually negative but set
equal to zero) and are a little too high for the age intervals 32 to U47.
The calculated percent surviving at age 50.5 years was 0.006%. The
corresponding, smoothed survivor curve is a horizontal line (at 100%) from
age O to age 3.5 years and then drops fairly sharply from age.3.5 years to
approximately age 16.5 years, drops relatively less sharply from age 16.5
years to age 28.5 years, drops fairly sharply from age 25.5 years to age
41.5 years, and drops less sharply to approximately zero percent surviving
at age 149.5 years.

The ninth degree polynomial fits the ?:k satisfactorily. The
corresponding smooth survivor curve (not shown) is somewhat irregular
from age O years to age 6.5 years but essentially follows an Rl type
curve, with an average service life of approximately 24,5 years, beyond
age 6.5 years. The calculated percent surviving at age 48,5 was 0.003%.

The procedure developed in this dissértation was applied to the data

of the example., Polynomials of the first through tenth degrees were fitted

to ‘the ?ik by the weighted least squares method, where
% = L. .k
kLo 7 M..k



12k

and the weight given each ?ik is

Lc -l{ * Mo -k

W. =’v—7—;‘—rc-_7
kT (1- 7,

The highest degree polynomial which was significant at the 0,05 level by
the F test was the third degree polynomial. The T:k were interpolated
from the above~-mentioned third degree polynomial fit of the %ik and used
to calculate the Gik. Then polynomials of degree one through ten were
fitted to the rik by the welghted least-squares method, where the weight
assigned to each sy Was l/G?k. The fourth degree polynomial was the
highest degree polynomial which was significant at the 0.05 level by the
F test.

A plot of the retirement ratios interpolated from the fourth degree
polynomial fit of the r,, is shown in Figure 15. The retirement ratio at
age interval 59 (57.5 to 58.5 years) is one. The corresponding smoothed
survivor curve is shown in Figure 17 and a plot of the Rl - 25 survivor
curve 1s shown in Figure 18, The smoothed survivor curve, plotted
according to the commonly used ordinate and abscissa scales, forms a very
smooth curve and almost exactly matches an Ry - 24,5, The percentv

surviving at age 50.5 years was 0.048%.



Figure 16. Smoothed retireme=nt ratio curve from the fourth degree polynomial fit of the Tiy
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Figure 17. Smoothed survivor curve from the fourth degree, polynomial fit of the Lok
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Figure 18. Ry - 25 survivor curve
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CONCLUSIONS

The investigation of the vertical distribution of retirement ratios
at each age interval, by simulation, ilndicated the following:

L. The points of the cumulative distribution of retirement ratios
for an age interval plotted on normal probability paper lie
nearly along é straight line, except for the early and late age
intervals,

2., The variance of the distribution of retirement ratios generally
increases as the age interval index number increases (for a given
Towa type curve, average service life, and sample size).

3. The variance of the distribution of retirement ratios for a
given age interval decreases as the vintage group size increases
(for a given Iowa type curve and average service life).

Hence, each retirement ratio from a vintage group i1s a sample from an
approximately normal distribution and the assumption of the homo-
scedasticity of variances is invalid.

Purther investigation yielded a pseudo-~normal computer program which
generated cumulative distributions that closely matched, visuwally, the
simulated cumulative distributions of retirement ratios for all age
intervals, except the late age intervals. The variance of the cumulative
distribution generated by the pseudo-normal computer program can be
calculated and only the vintage group size, an estimate of the probability
of a unit being retired during the giVen age interval, and an estimate of

the probabllity of a unit being retired after the given age interval need

to be known.
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A procedure was developed for fitting'polynomials to retirement
fatios. The basic assumptions of fthe procedure are:

1. The r,, are independent random samples,

ik
2. The age intervals during which the units are retired are
determined without error, and
3. The E(rik) is a constant for a given k.
Under these assumpbtions, the procedure utilizes estimators of the poly-
nomial coefficients which are not necessarily unbiaséd but which probably
have relatively good variance properties. If the estimates‘of the
variances of the retirement ratios are assumed to be the actual variances,
an assumption which may be reasonable because of the manner in which the
variances are calculated, the estimators of the polynomial procedure are
best (minimum varianoe) linear unbiased estimators. If, in addition, the

r., are assumed to be distributed N(pk, cik), the estimators are unbiased

ik
and have minimum variance amongst all unbiased estimators; the normality
assumption is supported by the approximate linearity of the ploté of the
simulated cumulative distributions on normal probability paper.

The procedure developed herein was not applied to the data of actual
industrial property. Fubure research needs to be done té determine whether
~ this procédure is sigﬁificantly better than previously developed procedures
and the procedure set forth in Appendix D. Additional research might also
be directed towards developing a procedure for fitting polynomials to

retirement ratios which considers the effect of the non-independence of

the retirement ratios calculated from the same vintage group.
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APPENDIX A - GENERAL FLOW CHART OF SIMULATION PROGRAM

Simulation of the retirement experience of a given vintage group
can be used to calculate one retirement ratio for each age interval.
Repeated similation of the retirement experience of the same vintage
group yields addition retirement ratios for each age interval. These
retirement ratios for an age interval constitute an empirical, vertical
distribution of retirement ratios for that age interval. A general flow
chart of the computer program to accomplish this simulation of the vertical
distribution of retirement ratios at each age interval is presented in this
appendix.

An Iowa type curve was used to provide the parent population of ages
of units at retifement for the purpose of simulating the retirement
experience of a vintage group.

The abbreviations used in the flow chart are:

Arr, = arrange

Betw. between

Calc. = calculate

Corresp. = corresponding
Cum. = cumulative
Distr. = distribution
Exp. = experilence

No. = number
Ret. = retirement

R.U.N. = random number from a uniform distribution

Sim. = simulated
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Theor. = theoretical -
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APPENDIX B - GENERAL FLOW CHART OF NORMAL APPROXIMATION PROGRAM

The computer program, the general flow chart of which is presented

in this section, generates an approximation of the vertical, cumulative
H

distribution of retirement ratios at each age interval. A vital section

of the program is the sdbrdutine, obtained from the Iowa State University

Statistical Iaboratory - Numerical Analysis and Programming Section, for

canputing an approximation of the normal cumulative distribution. This

subroutine is based on the work of Hastings (12, p. 168).

The abbreviations and symbols used in the flow chart are:

Approx.
Calc.
Cum.
Distr.
Incr.
Neg.
No.
R.
Ret,
Subr.
Surv.

Theor.

ok

Jk

approximate
calculate
cumulative
distribution
increments
negative
number

Pri(1 - ‘I‘)L_k - T M, < 0]
retirement
subroutine
surviving
theoretical

Jd

2L,
j=L 9%

1 if the jth unit of the sample is retired during the

kth age interval



M

=

Xk

Jk

1

I

1

1

il
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O otherwise
J
=1 Jk
1l if the jth unit of the sample is retired afver the
kth age interval
O otherwise

mean

variance

dumy variable
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(Approx.) Value of the Normal T
I gum. Distr. for the Given T:Mk; Hye
o,, and No, Surv. at Age Zero 2
k Oy
R. _
Ret. Ratio
Go to 1 2
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APPENDIX C ~ MAXTMUM-LIKELIHOOD ESTIMATORS

OF THE POLYNOMIAL COEFFICTENTS

The procedure for determining a maximum~likelihood estimator is

(1, p. 101):

1.

20
3e

Let

Then

;f the rik

Determine the distribution function of the sample,
f(Xl, Koy o v o5 X5 ). :
Determine I = log f(Xl, Xos * v 05 X5 ).

Determine the value of 0 which will maximize L by solving the
equation: L/38 = O. This will also maximize the likelihood.

population retirement ratio for the kth age interval

e =
Tip T retirement ratio for the kth age interval obtained from
the ith vintage group (assumed to be NID(uk, Gik))

Gik = variance of the population of retirement ratios for the

kth age interval from samples of the size of vintage
group i
ﬁk = maximum-~likelihood estimator of e
c?k = variance of @k.
) (r5y, - %c)z
20Ty

-t
f(rik) = Giﬁﬁz? e

are assumed to be normally distributed.

1}

QKNN@wcHQ i=1,2, ¢+, I

k

it

1’2’00.’1{
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The distribution function of the sample retirement ratios at age

interval k is

e Tope * 7 "s Tpd by)

- 1/2 ; (rlk - !J’k)g

I o.
L \I 1 i=1 ik
= (Z=)"(nm =)
Nem ey Tyx e
where
I 1 1 L 1
el ol e N =0
i=1l ik 1k Y2k Ik

L is the natural log of the distribution function.

L= ln[f('flk, r2k’ c e rIk; !J'k>

Tr., -
1 I 1 ik~ Pg.2
= I In(==) + ln(gx =) - 1/2 S(———)
Nar ik Tix
I I I L
where 11 and % denote 7 and ¥ , respectively. L is maximized by setting
i=1 i=1

Tthe partial derivative of L with resgpect to Ko equal to zero and solving

for e

- Ir,, -
Lo 1f(e) (- Ly =0

Ohge ik Oiy
Ir.. - u

ik k
(=) =0

91k
Ir, I
ik, _ My
O3k %ik

Since e is a constant over all I, by assumption, then
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T
2
_ E T/

I 2
z l/sik

I .
21/ Gik) (z4)

I o2
Z(l/cik)
Thus, the maximum-likelihood estimator of the retirement ratio for age

interval k is the welghted average retirement ratio. The welght to be

given each retirement ratio, X5 is the inverse of the variance of the

. . 2
retirement ratio, Oip

Let
W =4 —]:.—
ik 2
ik
I
Ve T 2 Wik
I
2
=3
H(l/cik)
The estimabor of the variance of'{f,k is
2 i~
I
ZW,. T,
= Val‘( ik lk)
ok

W, T Wa, T Weu T
1k "1k + 2k "2k e e et Ik Ik)

Tk Tex - Yk

var(

W T W, xr . W r
var (—J_l-;—ils) “+ var (__g..vl;___g.l}-’_) A var (_%—E)
. k . . k * k

For a given sample retirement ratio, iy from an N(“k’ Gik) distribution,

the variance of the sample,'oik, is a constant and, therefore, wik and w K
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are constants. Also, the variance of a constant times a variable is the

square of the constant times the variance of the variable. Therefore

) ) )

[ <

W W, W
2 = -—-];.12 ——g}E o s & + ....E{_
o) > va,r(rlk) + = var (r2k) + > var (rm)
J'k 'k 'k
But
- 2
var(rik) =05y
= L
Wik
Therefore W2 W2 Wg
2 kv, 1 2kyr L ITky, L
P = ()« () v ()
Vo oL Ve 2k LIS Ik
W, W, W,
= Ak L2k, K
3 +v2 " "3
N'k v -k Xk
Iw.
= Z _l..l.g
¢2
Vi
D
TV‘2
W
= l/w.k
I
I
2 Wiy
_ 1
I
2
Z(l/oik)

Thus, the maximﬁm_—likelihood estimators of the by s ’p,‘k, and the variances

2
of the Hk’ T,y are



1h7

I 2
o £(1/o 5 ) (ry)
kTTTO
2(1/55)
2 —3 —.—_—-J-—.—
S I o
Z(l/bik)

The regression equation of retirement ratios on age intervals is, for
the first degree case
= T +
g B ey

= a + bxk + e

Tox X
where
= "observed” weighted average retirement ratio for age
interval k (i.e., the sample calculation of ﬁk)
«,8 = regression coefficients
&y = error term
a,b,ek = estimators of o, B, €3 respectively

X, = age interval index number
Since i is aistributed NID(gk, G'k) (11, pp. 29-30) and, therefore,
o ~ NID(0, o )

k
the maximum-likelihood estimators of ¢ and 8, a and b, respectively, can

be determined. The distribution function of the ek's is

f(el: 62? ° Ty eKS €k)

K % " Pe
- 1/2 S(——E)
= (EEE 5 e o
\am €y

Since ‘the mean of &y equals zero



148
f(elD 't ': eKS €K) .
K
- 1/2 3(=—5)°

K ’ €
_ s L \K k
)@, )e

The regression equation, in terms of € is

e T M Tt By

Therefore

f(r,ls T T Tops Xgn 00 %y X O 8)

Ky —@ =B
- 1/2 Z(__lg__z_______Xk)Z
= (= 5E 5 e %k
]
\2n €y

The L is

L= ln[f(r,l: Tt oty Togs Xgo 0oty Xl O B)]

1 K 1 Kl =@ = Bx 5
= Kln(—=) + In(m —=) - 1/2 %
)+ inr 7 - 2/ A
k K

The maximum-likelihood estimator of & is given by

- Ky, ~a=-8
3L _ X N 1
= = - /22X )-=) =0
€k e

X K
P 2 2

Sy fo =L aﬁ: + 2 Bx ﬁj

K ey o W,

R R TV
e Cey B

The maximun-likelihood estimator of B is given by

(3)



Ky, - o~ Bx X
="l/222(k k K

Q/
=t

!

o/

w
qQ
qQ

x x

K K K

2 2 2,2 .

= +

2 e X/0 @ X Xk/be P zzxi{/be~ (4)

k k k
Since a and b are constants and x is assumed to be measured without error,
the variance of Loged O?k’ is the variance of €5 oik. Replacing Wes @ B,

and oi by e & b, and G?k’ respectively, equations 3 and L become

k

X X K

2 2 2
Drgfo, =e Tl/oy * Ix /ol (5)
X K X

2 2 2,2
z X1 r'k/c'k =a Lk X'K/G.k +D X Xk/o'k. (6)
or

X K X
ZW o Top Ta 2w, ThIw, X
X X K

- 2
X T W =@ X Xp Wop T b X Xy W

which are the same as the first two normal equations obtained by the
principle of least-squares.

The maximum-likelihood estimators for the coefficients of higher
degree polynomials can be solved for in a similar manner.

If the variances are known, the maximum-~likelihood estimators oi the
polynomial coefficients are unbiased and have minimum varilance amongst

all unbiased estimators (9, pp. 113-11l, 117).
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APPENDIX D - PRELIMINARY APPROACH

Dr. Fullerl suggested a preliminary approach (tb the problem of

fitting a polynomial to the retirement ratios) based on sampling theory.

The link between retirement ratios and sampling theory is the analogy

between the several retirement ratios at an age interval (one from each

vintage group) and cluster sampling from proportions (25, pp. 236-237).

Let

L sk

+d

1

s

ik

]

population retirement ratio for the kth age interval
sample estimate of B from the 10 vintage group (or T cluster)
vintage group (or cluster) index number

1,2, = ° 3 I

unit number within a vintage group (or cluster)
1’2’..,."]-

age interval index number

1,2, « 0 0, K

1 if the jth item of the 1'% vintage group (or e cluster) is
retired during the kth age interval

O otherwise

1 if the jth item of the i°® vintage group (ith cluster) is
surviving at the beginning of the kth age interval

O otherwise

J

2 M gy
Mok

PRI

lFuller, Wayne A., Professor of Statistics Department, Iowa State
University of Science and Technology, Ames, Iowa., Information on sampling
Private comunication. 1967.

theory.
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n .th . -
number of units from the 177 vintage group surviving at the

. th . . - .th
beginning of the k= age iaterval (or size of the i’ cluster

at the k'O age interval).

=R
I

composite estimate of Ek

Then

M
]

L2

I
L}J.
—te
W

ik

=

ij

Mo MYy
=

=
S.
[

o
-

A single estimate, Rik, of the population retirement ratio for age
interval k can be obtained by weighting each rik by the inverse of its

variance. The variance of rik’ copditional upon the denominator of Ty

is J

since Lijk is binomially distributed. Therefore
P Q
vaz (z;,) = "?‘%
ik
and
- 1
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Then

ok

since Pk and Qk are caistants over all I for a given k.

The welght to give each ’%:k when fitting a polynomial to the ?.

k 18
not clear. A suggested weight for each %-k is
I
Q? ) PN Jik
'k Pka
where
Lo %_k 1s the inverse of the variance of ?-k’
2. The variance in (1) is conditional upon the denominators, Sik’ and
3. %,

% is the composite sample estimate of Pk'

The expression to minimize in fitting a polynomial to the retirement ratios
by a weighted least squares approach is, then,

I

X zod..
Min {2[?——(1—:1—'%——]‘[?6,_ - (a. + bxk + cX2 e e .)]2}
a,b,c,ete. 'k Yox TR :

Wwhere
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?;k = sample estimate of Rk
The variances of the ?:k used in fitting a polynomial to the retire-
~ 2 . .
ment ratios, U-k’ present a theoretical problem. Since

L, Zach variance i1s conditional upon the denominator,

2. The numerators and denominators are related in the following

manner
L
¥,
ool
r’; - 0D
.2 Mooe
= ) -
M“2 M--l Lool
Lo.l = M..l - M.,g
~ L
T =203
. M
3 0e3
M = M - L

? = Lb.K

‘KM, oK
Mg " Mg - Doogan

LICK = M"’K

IJK
DL o = D,
IJ
= TIM,
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.ll
then the variances, when all J‘k are known and considered, are variances
i
of constants and are zero., The extent to which tnis theoretical considera-

tion limits the usefulness of the practical application of tae procedure

is not known,

The least squares expression of tials preliminary approach

(ol ( 2 )
Min o0 =T, - (a +Dbx +cxl + >+ )]
a,bycyetc. Tl - ?-1;5 k x k

is quite similar to the least squares expression of a present method of

dbtaining a smoothed life table (see p. 54 of this dissertation)

X 2 2
Min s [T, ~ (a+Dbx +cx= + -« )]}
a,b,c,ete. Kk }%{ x
where the ?‘k in both expressions is
I \
Z retirements during the km age interval from vintage
¥ = group i
kI

Z survivors at the beginning of the kth age interval from
vintage group 1

©and

I

I
v survivors at the beginning of the kth age interval from

vintage group i

L]
1]

°k ok

]

The import of this similarity between the least squares expressions would
seem to be that the present method of fitting a polynomial to the weighted

average retirement ratlo
I

2 Ry

T TTT
2 S5y
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by a least-squares approach whers each ?ik is weighted by
Vo = S-k
may be a reasonable method, but a method in which the weight given each

?1k could, perhaps, be improved upon.



APPENDIX E - GENERAL FLOW CHART OF PROGRAM

TO IMPLEMENT THE PROCEDURE

The computer program to implement the polynomial fitting procedure
developed in this dissertation is actually a combination of several
computer programs. The basic parts of the program are the subroutine to
fit polynomials to retirement ratios, the subroutine to compute an
approximation of the normal, cumulative distribution, and the section which
computes Gik' The remaining parts of the program primarily process the
data to obtain the necessary input to the above-mentioned subroutines and
provide instructions to the computer as to when to proceed to which
operations.

The abbreviations and syribols used in the flow chart are:

Approx. = approximate
Calc. = calculate
Cum. = cumulative
Deg. = degree(s)
Distr. = distribution
Extrap. = extrapolate
Inc. = increment(s)
Interp. = interpolate
No. = number
Polyn. = polynomial(s) -
Ret. = retirement
Sign. = significance, significant

Subr. = subroutine
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Surv. = surviving

Wtg. = welghting

A Lok
ok L--k T M..k
I J
Lok = 15135 Li 5k
5 5k = 1 if the jth unit of the ith vintage group is
retired during the kth age interval
= O otherwise
I 4J
Moy = iz'lelMijk
M, 5 = L iF the 5B unit of the 1°® vintage grouwp is
retired after the kth age interval |
= 0 otherwise
- + M
Vo = ;"(1 - %k)
*k ok
¥, = value Of the refiirement ratio for the k' age intervel

interpolated from the polynomial fit of the ?,k
T = qQumuy variable

A = delta; amount of- increment

C, = Ro(Lijk =1)
4 = =
Cy = Pr(Mijk 1)

by = Ti€an

2 .
o) = variance

- - - <
P=Pr[(L T)Li_k T L.y = O]
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AreaT = grea above the cumulative distribution versus

T curve

Area n = area above the cumulative distribution versus

‘I‘2 curve
I
ZW., I,
;@ =i=l ik Tik
ok T
AT
l:
I
A 1
W. = D=
ko 510%
v =k
ik 52
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[ ] / ;;;1_ ﬁ%ead Ne. of Units\ F calc. = e
‘ / \ \ [ Surv. at Each Age) | ~
| Start | Program L - and
| | ORI / From Each ! ok
| \Param@tg,rs / Vintage Growp / | . TOF
| .L
; Calc. F Ratio for Call Polyn. Subr.; Fit
Select Polyn. Sign. of n'® Deg, Polyn. of Deg. One

/

of Highest e | 21 ~
Sign.bDeg. ,_\ ;Term over (n-1)" Through Ten to r , Wtg.
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| b | Deg. Term Each By W

e o e tk

|

|
!r terp Values ;PDO ;;teps From Here i
' * | i = +
!O _ from selected Set k = O .to L for Each _____}_,_Set k _ kL
| LPolyn i Vintage Group | A = 0.0L
I . I i=l,eee,T ;

{

1 ' Call Subr. to Compute the f 5 } z Do Steps From |
(Apnrox ) Values of the Nor’nall Calc. by and oy iCalc. Ck Here 50 2 for !

i Cum. D:Lstr. for the Glven T,
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§
|

i
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APPENDIX F - TESTING FOR NORMALITY

The use of certain statistical procedures, such as setting confidence
limits or making tests of slgnificance, requires an assumphion about the
istribution of the variable. Freguently, the variable is assumed to be
normally distributed. Therefore, a considerable amount of research has
been done on the problem of testing the normality of a sample (27, p. 591):

Testing for distributional assumpfions in general and for

normality in particular has been a major area of continuilng

statistical research--both theoretically and practically. A

possible cause of such sustained interest is that many

statistical procedures have been derived based on particular

distributional assumptions~-especially that of normality.

A number of statistics are available for testing the hypothesis

Ho: {Yi}'VN(p,, c) i=1,2, 5+ «, I
where {Yi} is a sample of size I. In testing a hypothesis, two types of
error are possible (2k, p. 27):

Type I error. If we reject our hypothesis when it is actually
true, we have comnitted an error of the first kind, or a

Type 1 error.

Type IT error. If we accept our hypothesis when it is actually
false, we have committed an error orf the second kind, or a
Type I1 error,

The probability of a Type I error, o, is represented as

Ho true) = o

Pr(rejecting Ho
The probability of a Type II error, B, is represented as
Pr(accepting Ho|Ho false) = B
1 - 8 is called the power of the test and may be represented as

Pr(reject Ho|Ho false) = 1 - B
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Obviously, a btest of a Ho which minimizes both ¢ and B would be

desirable, however (24 p. 27):

We shall remark here that, if our size of sample (number of

sample observations) has been decided in advance, it is not

possible to minimize o and 8 simultaneously.
A common procedure is to select an «, a sample size, and a test. A
desirable attribﬁte of such a test is that (for any given sample size
and @) B is equal to or less than the B of any other test (or the power
of the test i; equal to or greater.than the power of any other test).
If a test with this attribute is not availéble, then the test which has
optimum over-all power, according to some criterion, should be selected.
The simplicity of the test, from.an applicationsvpoint of view, may be an
important, additional criterion.

Shapiro and Wilk (27) developed the W test for testing the hypothesis

Ho: {Yi} ~N, ¢) 1i=1,2, ¢+, I

and empirically obtained the power of the W and eight other tests against
each of fifteen different distributions. Comparing the power of the W
statistic with the power of any one of the other eight tests shows that
the power of the W statistic is greater against at least a majority of the
fifteen distributions.

The W statistic is (27, p. 602-603)

b2
W= =
S
where
k
D= L oay sy U V)
i=l
a = a set of multipliers obtained from a table and

dependent upon n
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o

n
=3 (@, - 57
e

yi = observed values arranged in ascending order
i =12, °* - *n
no.. .
k = 7 1T n is even
n-1 . .
=-—-é—— if n is odd.

The W test is origin and scale invariant (27, p. 593).

One of the criteria occasionally used in selecting a test is the
simplicity in application of the test. The computation of the W statistic
requires a set of "a" factors which are different for different sample
sizes. Thus, a table of "a" factors must be available when the W
statistic is used.

The objective of the Investigation reported in this appendix was to
find, by simulation, a test (or tests) for normality simpler than the
W test yet having power at least comparable to that of the W test‘against
other distributions.

A possible statistic for tésting for normality might be the

coefficient of correlation

r=x(l-———H"z i=1,2,"° "I
Z(y; - )
where
I A
z (yi - yif = the sum of the squares of the vertical
i=1

deviations from a linear regression line fitted

by the method of least-squares
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= the sum of the squares of the deviations of
the observed values from the mean of the
observed values

The statistic (the coefficient of correlation)--is, uadoubtedly,

the most widely used measure of the strength of the linear
relationship between two variables. (7, p. 355)

The denominator, Z(yi - 5)2, is a measure of the total variation of the
y's. The numerator, Z(Yi - &i)z, is a measure of the chance variation
(i.e., a measure of the variation not explained by a linear relationship
between x and y).

If a coefficient of correlation type statistic is to be used to test
for normality, selection of the X variables in order to obtain a linear
relationship between the vy and the X, is crucial. The scheme devised %o
obtaln a linear relationship between the yi and the x5 is analogous to
plotting the y; on normal probability paper. If a random sample is drawn
from a normal population and the sample values arranged in ascending order
and plotted on normal probability paper, the sample values will fall

closely about a straight line. VThe ordinates of the probability plot are
the ordered ¥y (hereafter denoted as Yi) and they are plotted on a linear
scale. The absclssa values are the percents of the cumulative distribu-
tion and they are plotted according to distances representing the
standard deviates of the normal dlstribution. Hence, a set of Yi should
be linearly related to the ordered set of standard deviates (hereafter
denoted as Xi) if the y; are random samples from a normal population.

Two modifications of the coefficient of correlation were made in

developing the test statistics. Firstly, only the ratio portion of r was



used because the ratio

A \2
(Y - )
I
s (Y, - ?)2

is the proportion of the total variation due to chance (7, p. 359) and,
therefore, is a measure of the amount of departure of the {Yi} from
normality. Secondly, some statistics of the same form but with greater
exponents were investigated because ratios of this form with the
deviations raised to the third and fourth power are measure of skewness
and kurtosis, respectively.

The test statistics investigated were of the form

L

SOREARR Al
S = lil ; where gh = dc
[ =y, - 3°°
i=1
{Yi} = gsample values drawn from some distribution and arranged in
ascending order; 1 = 1, 2, ¢ » =, I
I = sample size
Y = mean value of Y
I
x Yi
_ i=1
I
A
Y. = a + DbX,
i i
{Xi} = the ordered standard deviates

where a and b were obtained by fitting a linear equation to the paired
values . 2 S
u {Yi, Xl}
The S statistics are scale and origin invariant. The proof 1s as

follows:
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1. The normal equations for estimating o and B are

I
("Y' means ¥ )
i=1
Y. =Ia+bIX
1 1
TX.Y. =alX +b 33X )2
44t i i

and the regression equation is

A
= +
Yi a in

2. Solving for a and b yilelds

2
_ z(xi) ZY, - LX TXY,

a' =
2 2
I Z(xi) - (Z Xi)
- /T
- z XY, Z X, )X Y /I
‘ 2 2
I(x;)" - (2%,)/1

3. Since the Xi are the standard deviates (of the normal distribu-
tion) and are symmetrically located about the origin, Z X = 0.

Therefore,

2
z(xi) ZY,
2
)

o
11

T Z(Xi

]

M; Assume a set of Yi are drawn and transformed as follows
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b K(Yi - )
I
and
L X!
1 1

Pl = ——=
5
Z(xi)

) ZXiK(Yi - T)

2
Z(xi)
The form of the statistics is

=y - %i']g)ﬁ

: = cd
dJ
)

(zly] - ¥'|°
) =y - (& + b’xi)lg)h

(sl - 71%)°

Then LK(Y, - £) S X K(Y, - £)

(2l - 2) - g * % 183"
— L
5= ZK(Yi-ﬂlcd

{Z{K(Yi - f) - —

g}h

Z Y, . L XY, . .
K‘gh{ZIY.-—f- 1+f_X1 X11+X1f22X:L
i I Z(x; )2 (%)

Ty,
KCd{ZIYi - f - £ ¢)4

Collecting terms
LY, X, ZX.Y,
i i7i

(ZlYi T = - Z(X )2 }g)h
1
S = T Y.
(Zlyi - —f—j:lc)d

since Z Xi = 0,
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6. Let
Z Y,
8 = —=
Z XY,
b = 5
Z(Xi)

Then, the numerator becomes

- Yi PN XiYi e
Gy - =y X, 115

h

Il

=]y, - [a +1x,1[%)

(Z{Yi - Qilg)h

Il

and
A gh
) (Z}Yi-Yi] )

i (z]y, - 7|%)%

thus completing the proof.

The powers of the S test were obtained empirically by simulation. A

preliminary simulation run was conducted as follows:

1. A large number of S type statistics were formulated.

2. Sample size was set equal to twenty and « set equal to 0.05.

3. One-hundred samples (each of size twenty) were drewn by simulation
from the normal distribution and from each of fifteen different
dlstributions (including fourteen of those utilized by Shapiro and
Wilk; see 27, p. 608).

L. The value of each S statistic and the W statistic (for o = 0.05)
was determined from the samples from the normal distribution.

5. The power of the test of each § statistic against samples from

each non-normal distribution was determined and compared with the
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power of the test of the W statistic against the same distribu-
ticns.

6. On the basis of (5), above, nine of the most promising
statistics were selected for further study.

The statistics selected for further investigation were

p g2
2|y - v
s2 = —
b N
€
gy, - %127
§12 = 1% i],l
|y, - ¥
sy, - 41593
se5 = ki ile
zly, - Y|
[z, - 3%1123“,
$26 = s
zly, - Y|
L B - P
§13 = —
[ZlYi - Yl433/2
- A 1342
gy, - %]
S6L = % il6
Y, - ¥
[zly, - 91[4]3/2
528 = —
zZly; - Y
8
o - zly, - 4
gy - 7|°
zly, - L[

l
gh3 = A i
1
Iy - Y

<1
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The distributions utilized and the number‘of samples (of three
different sample sizes) drawn from each of.the distributions for the final
éimulation run are shown in Table 5. The distributions utilized by
Shapiro and Wilk were all of those shown in Table 5 down to, and
including, the T(10, 3.1). A comparison of the power of the W test (for
o= 0,05 and I = 20) against the non-centralized X2 distribution obtained
by Shapiro and Wilk, 0.59, with the power of the W test (same o and I)
obtained in the investigation, 0.15, indicates that‘the non-centralized

x2 distributions used were probably not the same distribution.

Table 5. Sample size and number of samples for the final simulation runs

Distribution Sample gsize
10 20 . 50
Normal ' 2000 2000 2000
o ,
X ———— 1000 ———
(1)
X2 ——— 1000 ———
(2)
2
X m——— 1000 ———
(%) |
2
*(10) 500 500 S
Non-cent. x%l6) ——— 500 —-————
Log normal _—— 1000 c——
Cauchy 1000 1000 1000
Uniform 1000 . 1000 1000
Logistic 1000 1000 1000
Beta (2, 1) -——- 1000 —
TLaPlace . ———— 1000 ————
Poigson —— 1000 -
Binomial 1000 1000 1000

(5, 2.4) ——— 1000 ———
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Table 5 (Continued)

Distribution Sample size

10 20 30
T(10, 3.1) - 1000 ——
Half-normal 1000 1000 1000
Half-Cauchy ER— 1000 R
Sum of 3 uniforms ———— 1000 ————

The powers of the tests included in the final simulation run are
presented in Tables 6 through 14. Tables 15 through 23 show the
differences between the power of the S tests and the W test. A "+"
sign indicates that the power of the S test was greater than the power
of the W test by the indicated amount; a "-" sign indicates the opposite.
Table 24 shows the sum of differences across all « and I values and the

largest positive and negative differences.

Table 6. BEmpirical power of tests for o = 0.03 and I = 10

Distribution W S2 Sl2 825 S26 S13 S6L S28 sho  sh3

Binomial 0.33 0.28 0.46 0.h2 O.42 0.43 O.4h 0.42 0.34 0.30
' Uniform 0,05 0,03 0.10 0,12 0.1 0,07 0.11 0.09 0.09 0,10
Cauchy 0.55 0.56 0.52 0.46 0.42 0,54 0.51L 0.52 0.51 0.51
Half-normal 0,13 0.12 0.15 0.12 0.10 0.13 0.13 0.13 0.11 0.10
10) 0.08 0,09 0.10 0.07 0.06 0.09 0.08 0.09 0.08 0,08
Logistic ~ o,07 0,07 0.05 0.0k 0.03 0,06 0.05 0.05 0.05 0.05

q
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Table 7. Empirical power of tests for = 0,05 and I = 10

Distribution W 82 812 825 S26 S13 Sl - s28  sho gh3

Binomial 0.48 0.39 0.50 0.53 0.52 0.50 0.52 0.51 0.48 0.47
Uniform 0.09 0.05 0.14 0.18 0.19 0.11 0.15 0.13 0.13 0.13
Cauchy 0.58 0.59 0.56 0.52 0.49 0.57 0.55 0.55 .0.54 0.53
Half-normal 0.18 0.15 0.20 0.18 0.15 0.19 0.18 0.18 0.16 0.15

2 0.13 0.11 0.12 0,10 0,09 0.12 0.12 0.11 0.11 0.1l

X
(10)
Logistic 0.11 0.10 0.08 0.06 0.05 0.09 0.07 0.08 0.09 0.09

Table 8. Empirical power of tests for ¢ = 0,10 and I = 10

Distribution W 82 Sl2 825 926 813 sl s28  sho sh3

Binomial 0.55 0.56 0.59 0.60 0.60 0.58 0.60 0.61 0.56 0.54

Uniform 0.17 0.12 0.23 0.28 0.31 0.20 0.25 0.23 0.21 0.21
Cauchy 0.62 0.66 0.61 0.59 0.58 0.62 0.60 0.60 0.60 0.59
Half-normal 0.29 0.27 0.29 0.30 0.29 0.28 0.28 0.26 0.24 0.22
X%lo) 0.18 0.18 0.17 0.17 0.16 0,17 0.17 0.17 0.16 0.16
Logistic 0.16 0.16 0.15 0.13 0.12 0.15 O0.14 0.14 0.14 0,1k

Table 9. Empirical power of tests for o« = 0.03 and I = 20

Distribution W 82 812 §25 826 813 g61 828  sho sk3

X%l) 0.97 0.96 0.97 0.95 0.93 0.98 0.97 0.98 0.97 0.95
x%z) 0.80 0.76 0.76 0.69 0.61 0.77 0.76 O.77 0.73 0.69
x%h) 0.46 0.43 0.42 0.35 0.29 0.43 0.z 0.k2 0.37 0.36
X%lo) 0.21 0,18 0.19 0.15 0.11 0.19 0.18 0.19 0.17 0.16
ou-

cent. X%l6) 0.12 0.12 0.10 0.08 0.06 0.11 0.11 0.12 0,11 0.1l
Log normal = 0.93 0,91 0.91 0.87 0.82 0.91 0.90 0.90 0.87 0.84
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Distvibution W S22 Sl2 825 926 S13 s61 s28 sho  sh3
Cauchy 0.83 0.85 0.80 0.76 0.72 0.82 0.81 0.8 0.8 0.8
Uniform 0.15 0.07 0.22 0.29 0.31L 0.16 0.26 0.21 0.17 0.20
Logistic 0.08 0.09 0.06 0.05 0.03 0.09 0.08 0.10 0.10 0.10
Beta (2, 1) 0.24 0,17 0.27 0.28 0.26 0.23 0.28 0.26 0.24 0.24
LaPlace 0.2k 0,27 0.18 0.11 0.07 0.22 0.19 0.23 0.26 0.25
Poisson 1,00 0.99 1,00 1.00 0.98 0.99 0.99 0.98 0.8 0.80
Binomial 0.6k 0,61 0.72 0.74 0.70 0.61 0.66 0.60 0.37 0.33
(5, 2.4) 0.47 0.36 0.52 0.57 0.55 0,48 0.56 0.54 0.52 0.52
?(10, 3.1) 0.83 0.76 0.85 0.8: 0.79 0.83 0.8 0.8 0.8 0.80
Half-normal 0,36 0.30 0.35 0,32 0.26 0.34 0.35 0.35 0.34 0.32
Half-Cauchy 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.97
Sum of '

3 uniforms 0,03 0.02 0.03 0.0+ 0,04 0,03 0.03 0,04 0.03 0,03
Teble 10. BEmpirical power of tests for o = 0.05 and I = 20
Distribution W 82 Sl2 825 826 813 S6L 828  sho sh3
x%l) 0.99 0,98 0.98 0.97 0.96 0.99 0.99 0.99 0.99 0.98
<) 0.8k 0.83 0.8 0.78 0.72 0.84 0.83 0.8% 0.80 0.76
X%u) 0.53 0.53 0.53 0.45 0.40 0.52 0.51 0.52 0.47 0.43
X%lo) 0.28 0.29 0.27 0.20 0.18 0.26 0.24 0.25 0.23 0.21
Non- , ,

cent. X(16) 0.15 0,16 0.15 0.13 0.11 0.1k 0.15 0.15 0.15 0.15
Log normal  0.94% 0.94 0.94 0.91 0.88 0.94% 0.93 0.93 0,91 0.89
Cauchy 0.85 0.87 0.83 0.79 0.77 0.85 0.83 0.8 0.85 0.84
Uniform 0.22 0.15 0.29 0.36 0.39 0.23 0.32 0.29 0.26 0.27.
Logistic 0.11 0.14 0.09 0,06 0.05 0.12 0.10 0.13 O.14 0.13
Beta (2, 1) 0.31 0.27 0.35 0.35 0.34% 0.33 0.36 0.36 0.34% 0.33
IaPlace 0.28 0.35 0.25 0.16 0.13, 0.29 0.24 0.29 0.3L 0.29
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Table 10 (Continued)

Distribution W 82 812 825 826 813 sS61 s28  sho o sh3

Poisson 1.00 1,00 1.00 1,00 1.00 1.00 1.00 0.99 0.91 0.87
Binomial 0.73 0.74 0.82 0.85 0.83 0.70 0.74 0.67 0.47 0.40
(5, 2.4) -0.55 0.48 0.63 0.65 0.64 0.58 0.65 0.65 0.64 0.63
(10, 3.1) 0.88 0.84 0.90 0.88 0.87 0.89 ©0.91L 0.92 0.9L 0.89
Half-normal O.43 0.42 O.44 0,40 0.36 0.4 0.45 0.46 0.43 0.40
Half-Cauchy 0.99 0.98 0.99 0,99 0.98 0.99 0.99 0.99 0.99 0.99

Sum of
3 wniforms 0.05 0.04% 0.06 0.07 0.07 0.04 0.06 0,05 0.05 0.05

!
(@]

Table 1l. ZEmpirical power of tests for o = 0,10 and I = 20

Distribution W ~§2 Sl2 825 S26 813 S6L s28  sho  sb3y

x%l) 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99
x%e) 0,90 0.89 0.90 0.88 0.8 0.91 0.90 0.91L 0,91 0.89
X%h) 0.67 0.65 0.65 0.61 0.56 0.66 0.65 0.64 0.61L 0.58
x%lo) 0.38 0.35 0.36 0.33 0.3L 0.38 0.36 0.36 0.33 0.3l
Non-

cent. X(16) 0.25 0.25 0.2k 0,20 0,20 0.25 0.24 0.24 0.23 0.23.
Log normal  0.97 0.96 0.96 0.95 0.94 0.97 0.96 0.97 0.96 0.95

Cauchy 0.88 0.90 0.87 0.8: 0.83 0.87 0.86 0.8 0.8 0.8
Uniform 0.37 0,25 0.41 0.19 0.52 0.36 0.4h 0.4 0.38 0.4l
Logistic 0.18 0.21 0.15 0.11 0.10 0.19 0.16 0.19 0.19 0.19 -
Beta (2, 1) 0.48 0.41 0.48 0.50 0.49 0.49 0.50 0.50 0.50 0.L9-
IaPlace 0.39 0.45 0.35 0.29 0.25 0,38 0.3% 0.37 0.35 0.3%
Poisson 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.92

Binomial 0.94 0,92 0,99 0.99 1.00 0.86 0.89 0.78 0.63 0.57
T(5, 2.4) 0.73 0.63 0.74 0.76 0.77 O.74 0.78 0.77 0.78 0.78
(10, 3.1) 0.95 0.92 0.95 0.95 0.93 0.95  0.96 0.96 0.96 0.95
Half-normal 0.59 0.54 0.57 0.55 0.53 0.60 0.60 0.6L 0.59 0.57
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Table 11 (Continued)

Distribution W S2 812 §25 $26 813 861 s28  sLOo 343
Helf-Cauchy 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0,99
Sum of

3 wniforms 0.12 0.10 0,12 0.12 0,12 0,11 0,12 0,1L 0.10 0,10
Teble 12, Empirical power of tests for ¢ = 0.03 and I = 50
Distribution W §2 812 825 826 S13 861 s28  sho o gh3
Binomial 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.35 0.23
Uniform 0.81 0.51 0,77 0.8 0.8 0.70 0.8L 0.77 0.78 0.83
Cauchy 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98
Half-normal 0.92 0.87 0.91 0.88 0.82 0.91 0.92 0.9 0.90 0.8k
Logistic 0.11 0.21 0,1k 0.07 0,05 0.20 0,16 0.19 0.20 0,18
Table 13. Empirical power of tests for o = 0.05 and I =50
Distribution W 82 Sl2 825 826 S13 Sl %28 sho  @h3
Uniform ¢.87 0.65 0.8L 0.87 0,90 0.79 0.87 0.85 0,8+ 0.88
Binomial 1.00 1,00 1.00 .1,00 1,00 1.00 1.00 1.00 0.49 0.38
Cauchy 0.99 1.00 0.99 0.99 0.99 0.99 0,99 0.99 0.99 0,98
Half-normal 0.95 0.92 0.9% 0.93 0.90 0.95 0.9 0.9 0.9% 0,92
Logistic 0.1k 0.28 0.19 0.12 0.09 0.25 0.22 0.24 0,22

0.2k
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Table 14. Empirical power of tests for o = 0.10 and I = 50

Distribution W 82 812 825 826 813 6L S28  3hko  sh3

Binomial 1.00 1,00 1,00 1.00 1.00 1.00 1.00 1.00 0.83 0.68

Uniform 0.95 0.80 0.90 0.93 0.9% 0.88 0.93 0.9L 0.93 0.95
Cauchy 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0,99
Half-normal 0.98 0.96 0.97 0.97 0.96 0.98 0.98 0.98 0.98 0.97
Logistic 0.22 0.34% 0.29 0.23 0.19 0.33 0.30 0.3L 0.30 0.29

Table 15. Differences between empirical powers of W and S tests for
@ = 0.03 and I = 10

et

Distribution 82 s12 S25 s26 S13 SbL s28 sko sh3

Binomial +0.05 +0.13 +0.09 +0.09 +0.10 +0.11 +0.09 +0.01 =-0.03
Uniform -0.02 +0.05 +0.07 +0.09 +0,02 +0.06 +0.04 +0.04 +0.05
Cauchy +0.01 -0.03 -0.09 =-0.13 -0.01 -0.04 -0.03 -0.04 ~0.O04
Half-normal -0.0l1 +0.03 -0.0L =-0.03 0 0 0 =~0.02 -0.03
X%lo) +0.01 +0.02 -0,0L =~0,02 +0,0L 0 40,01 0 0
Logistic 0 -0.02 -0.03 -0.0& -0.0L -0,02 -0.02 -0.02 --0.02

Table 16. Differences between empirical powers of W and S tests for
¢ =0.05 and I =10

Distribution 82 s12 825 S26 S13 S61 §28 sko gh3

Binomial -0.09 +0.,02 +0.05 +0,04 +0.02 +0.,04 +0,03 0 =0.01
Uniform -0.04 +0.05 +0,09 +0,10 +0.02 +0.06 +0.04 +0,0h +0.Ok
Cauchy +.01 -0.02 -0.06 -0.09 -0.0L -0.03 -0,03 =-0.04 =-0.05
Half-normal- -0.03 +0.02 0 -0,03 +0.01 0 c -0.02 -0.,03

2 20.02 -0.01 -0.03 =~0.04 -0.0L -0.01 -0.02 =-0.02 =-0.02

X
(10)
Logistic -0.01 -0,03 -0.05 -0.06 -0,02 -0.04 -0.03 -0.02 -0.02
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Table 17. Differsnces between empirical powers
¢ = 0,10 and I = 10

of W and S tests for

Distribution S2 S12 825 S26 813 61 s28 sko sh3
Binomial +0.01. +0.04 +0.05 +0.05 +0.03 +0.05 +0.06 +0.01 -0.0L
Uniform -0.05 +0,06 +0,11 +0.14 +0.03 +0.08 +0.06 +0.04 +0.0kh
Cauchy +0.04 -0.01 -0.,03 =~0.0h4 0 -0.02 -0.02 -0.02 =~0.03
Half-normal -0.02 0 +0.01 0 -0.01L -0.0L -0.03 =-0.05 -0.07
X%lo) 0 -0.01 -0.01 =-0,02 -0.01 -0.01 =-0.01 -0.02 -0.02
Logistic 0 -0,01 -0.03 ~0.04 -0.01 -0.02 -0,02 -0.02 -0.02
Table 18. Differences between empirical powers of W and S tests for
o = 0,03 and I =20
Distribution 82 si2 s25 se6 S13 S61 s28 sko 343
x%l> 20,0l 0 -0.01 -0.0k +0.01 = 0 +40.0L 0 -0.02
x%E) ~0.0% -0.04 -0.11 -0.19 -0.03 -0.0k -0.03 -0.07 -0.11
x%h) -0.03 -0.0% -0.11 =~0.17 -0.03 -0.04 -0.04 -0.09 -0.10
X%lo) -0.03 -0,02 -0.06 -0.10 -0.02 -0.03 -0.02 -0.04 -0.05
Non-~
cent. X(16) 0 -0.02 -0.0% -0.05 -0.0L -0.01 0 -0.01L -0.0L
Log-normal -0.02 -0.02 -0.06 -0.11L =0.02 =-0.03 -0.03 -0.06 -0.09
Cauchy +0,02 -0.03 -0.07 -0.11 -0.01 -0.02 -0.0L -0.01 -0.01
Uniform -0.,08 +0,07 +0.14 +0.16 +0.0L +0.11 +0.06 +0.02 +0.05
. Logistic +0,0L -0.02 -0.03 =-0.05 +0.01 0 +0.02 +0.02 +0.02
Beta (2, 1) -0,07 +0.03 +0.04 +0,02 -0.0L +0.04 +0.,02 0 0
LaPlace +0.03 -0,06 -0.13 -0.,17 -0.02 -0.05 -0.01L +0.02 +0,0L
Poisson -0.0L 0 0 -0.02 -0.01 -0.01 =0.02 -0.15 -0,20
Binomial -0.03 +0.08 +0.10 +0.06 -0.03 +0.02 -0.04 -0.27 -0.3L
T(5, 2.4) -0.11 +0.05 +0.10 +0,08 +0.0L +0.09 +0.07 +0.05 +0.05
7(10, 3.1) -0.07 +0.02 +0.0L -0.04 0 +0,03 +0.03 +0.,01 -0.03
Half-normal -0.06 -0.01 -0.04 -0.10 =~0.02 -0.01 =-0.0L -0,02 -0O,0k
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Distribution 82 s12 s25 s26 S13 S61 528 sko 343
Half-Cauchy 0 0 0 -0.01 0 0 0 -0.01L -0.01
Sun of

3 uniforms -0.0L 0 +0.0L +0.0L 0 0 +0.01 0 0
Table 19. Differences between empirical powers of W and S tests for

o= 0,05 and I = 20

Distribution 82 s12 825 826 s13 S61 se8 sho sh3
X%l) ~0.01 -0.0L =-0.02 ~0,03 O 0 0 0 -0.01
x%2) ~0.0l 0 -0.06 =0.12 0 ~0.0L 0 -0.04 -0.08
X%u) 0 0. -0.08 -0.13 =-0.01 -0.02 =-0.01 -0.06 -0.10
X%lo) +0.0L -0.01 -0.07 -0.10 -0.02 -0.04 =0.03 =0.05 -0.07
Non- )

cent. x(16) +0.0L 0 -0.02 -~0.04 -0.01 0 0 0 0
1oz normal 0 =-0.03 -0.06 0 -0.0L -0.01L -0.03 -0.05
Cauchy 0,02 -0.02 -0.06 -0.08 0 -0.02 0 0 -0.01
Uniform -0.07 +0.07 +0.1k +0.17 +0.01 +0.10 +0.07 +0.04 +0.05
Logistic +0.03 -0.02 -0.05 ~0.06 +0.01 -0.01L +0.02 +0.03 +0.02
Beta (2, 1) -0.04 +0.04 +0.0k +0.03 +0.02 +0.05 +0.05 +0.03 +0.02
IaPlace +0.,07 -0.03 -0.12 -0,15 +0.01 -0,04 +0.0L +0.03 +0.0L
Poisson 0] 0 0 0 0] 0 -0.,01 -0.09 -0.13
Binomial +0,01L +0.09 +0.12 +0.10 -0,03 +0.01L -0.06 -0.26 -0.33
(5, 2.4) - ~-0.07 +0,08 +0.10 +0.09 +0.03 +0.10 +0.10 +0.09 +0.08
T(10, 3.1) -0.04 +0,02 0 -0.01 +0.01L +0.03 +0,04 +0,03 +0.01
Half-normal -0.01 +0.0L =-0,03 =~0.07 +0.0L +0,02 +0.03 0 -0.03
Half-Cauchy ~0,01 0 0 -0.0L 0] 0 0 0 0
Sum of

3 uniforms -0.01 +0,01 +0.02 +0.02 -0.01L +0.0L 0 0 0
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of W and S tests for

Table 20, Differences between empirical powers
@ = 0.1 and I=20

Distribution 82 s12 s25 826 S13 S61 s28 sko sk3
x%l) 0 0 0 -0.0L 0 0 0 0 0
x%g) ~0,0L 0 -0.02 -0.04 +0.0L 0 +0.0L +0.0L -0.0l
x%u> -0.,02 -0,02 =-0,06 -0.11 =-0.01" ~0.02 -0,03 =-0,06 -0,09
X%lO) -0.03 -0.02 -0.05 -0.07 0 -~0.02 -0.02 -0,05 -0.07
Non-~ . ,

cent. X(16) 0 =-0.0L =~0,05 -0.05 0 -0,0L -0.01 -0.02 -0,02
Log normal -0.01 -0.0L ~0.02 -0.03 0 -~0.0L 0 -0,01L -0,02
Cauchy +0.02 -0,0L =-0.0% -0,0% 0 ~0.02 -0.02 -0.02 -0.02
Uniform -0,12 +0.04 +0.12 +0.15 -0.01 +0.07 +0,04 +0,0L +0.0L
Logistic +0.03 -0.03 =~0.07 -0.08 +0.01 =~0.02 +0.01L -+0.0L +0.01
Beta (2, 1) -0.07 0 +0.02 +0,01 +0.01 +0.,02 +0,02 +0,02 +0.01
LaPlace +0.06 -0.04 -0.10 -0.1k ~0.0lL =-0.05 =-0.02 -0,0k -0.05
Poisson 0 0 0 0 0 0 0 -0.03 -0.08
Binomial -0.02 40,05 +0.05 +0.,06 -0.08 -0.05 -0.16 =-0.31L =-0.37
(5, 2.4) -0.10 +0.01 +0.03 +0.04 +0.0L +0.05 +0.0k +0.05 +0.05
(10, 3.1) -0.03 0 0 -0,02 0 +0.01L +0,01 +0.0L 0
Half-normal =-0.05 -0.02 -0.04 -0.06 +0.0L +0.0L +0.02 0 -0,02
Half-Cauchy 0 0 0 0 0 0 0 +0.01L 0
Sum of :

3 uniforms =-0.02 0 0 0 -0.01L 0 -0.01 -0.02 -0.02

Table 21.

Differences between empirical pcwers

of W and S tests for

o = 0.03 and I = 50
Distribution 82 s12 s25 826 S13 S61 $28 sko sk
Binomial 0 0 0 0 0 0 0 -0.65 -0.77
Uniform -0.30 -0.04 +0,0L +0.04 -0.11 © O -0,04 -0.03 +0.02
Cauchy 0 +0.0L 0 0 0 0 0 -0.01 -0,0L
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Distribution  S2 sl2 32

5

S26

S13 S61L g28 sko sh3

Half-normal -0.05 -0.0L -0.0L

Logistic +0,10 +0,03 -0.04

-0.10

-0,06

-0.0L 0 0 -0.02 -0.08
+0.,09 +0.05 +0,08 +0,09 +0.07

Table 22. Differences between empirical

o = 0,05 and I = 50

powers of W and S tests for

Distribution 82 S12 s25 526 S13 S se8 sko sk3

Binomial 0 0 0 0 0 0 0 -0.51 -0.62
Uniform -0.22 -0,05 0 +0,03 -0.08 0 -0.,02 -0.03 +0.0L
Cauchy +0,0L 0 0 0 0 0 0 0 -0.0L
Half-normal -0.03 -0.01 -0.02 -0.05 0 +0,0L +0,01 -0.01 =-0.03
Logistic +0,1% +0,05 -0.02 -0.05 +0.11 +0.08 +0.10 +0.10 +0.08

Table 23, Differences between empirical

0.10 and I = 50

powers of W and S tests for

s26

S13 S61 s28 sko sk3

Distribution 82 Si2 325
Binomial 0O 0 0 0
Uniform -0.15 -0,05 -0,02
Cauchy 0 0 o)

Half-normal -0.02 -0.01 -0.01
Logistic +C.,12 +0.07 +0.0L

0
-0.01

-0.,02
-0.03

0 0 0 -0.17 -0.32
-0.07 -0.02 -0.04% -0,02 0
0 -0.01 -0.0L -0,0L -0,01
0 0 0 0 =~0.0L
+0,11 +0.08 +0.09 +0.08 +0,07
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Table 24. Summary of differences between empirical powers of the
W and S tests

s2 s12 s25 s26 513 sé1 s28 sko 343

Sum of
differences -1.56 +0.43 -0,62 -1.97 -0.03 +0.57 +0.38 -2.67 -L.0L

Maximun
positive
difference +0.14 +0.13 +0.14 +0,17 +0.11 +0.1l +0,10 +0.09 +0,08
Maximun
negative
difference -0.30 -0.06 -0.13 -0.19 =-0.11 -0.05 =-0.16 -0.65 -0.77

The values of the § statistics S61, §12, 828, and S13 for o = 0,03,
0.05, and 0,10 and sample sizes of 10, 20 and 50 are shown in Table 25.

“

A difference in methods of application should be noted. For the W test,
the null hypothesis should be rejected if the computed W is less than

the table Wa,I' For the § tests, the null hypothesis should be rejected
if the computed S 1s greater than the table Sa,I'_ The S te;t procedure is:

1. Ho: {yi} ~ N(ps o)

2. Select o and sample size, I.

3. Draw sample and arrange observed values in ascending order.

L. Obtain standard deviates of the normal distribution from a table
and arrange in ascending order (the continuity correcfion used in
this study was (2i - 1)/(21)).

5. Fit a linear regression line to the paired {Xi, Yi}.

6. Compute Y = % Yi/I and ?i = a + DX, .

7. Compute S¥* (861, sl2, s28, or §13).

8. If s%* >g¥* _, reject Ho.
o,
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Table 25. Values of the S61, S12, 828, and S13 statistics
S61 sie s28 S13
o = 0.03 0.953488-2%  0.93992E-1  0.50630E-2  0.63203%-2
I=10 «=0.05 0.72391E-2 0.79797E-1 0.39329E-2 0.46956E-2
@ = 0,10 0.47298E-2 0.60930E-1 0.248875-2 0.30499%-2
o = 0,03 0.44251E-2 0.68788E-1 0.20886E-2 0.25467E-2
I=20 g=0.05 0.341188-2 0.54936E-1 0.15477E-2 0.18248E-2
o = 0.10 0.21474E-2  0.LOB38E-1  0.10039E-2  0.10967E-2
o« = 0.03 0.17546E-2 0.37098E-1 0.82431E-3 0.64293E-3
I=50 o=0.05 0.11906E-2 0.3L369E-1 0.56386E-3 0.47066E~3
@ = 0.10 0.75836%-3 0.221208-1 0.34697E-3 0.28435E~3

%The number before E is to be multiplied by a factor of ten raised to
the power of the algebraic number after E.

The results of the final simulation runs indicate;

1. The 861, S12, $28, and S13 tests appear to be the "best” of the

S type tests.

2. The empirical powers of the 861, §12, §28, and S13 tests are

comparable to the empirical powers of the W tests.

‘The criterion used in selecting the best of the S tests was the total sum

of the differences between the emplrlcal powers of the W and the S tests.

An additional criterion was to minimize the maximum negative differences

between the powers of the W and S tests.
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