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INTRODUCTION 

Businesses may utilize estimates of the mortality behavior of 

property for a number of purposes, such as computing income tax liability, 

computing the rate hase and depreciation expenses for rate regulation, and 

inalcing management decisions relating to property. A usage of estimates 

of mortality behavior of property common to all of these purposes is in the 

calculation of depreciation. Depreciation calculations generally require 

an estimate of the probable average service life of the property group, 

or the probable service life of the unit of property, and may require an 

estimate of the probable retirement dispersion pattern of the property 

group. The process of estimating the probable average service life or 

probable service life and, if feasible, the probable retirement dispersion 

pattern is called life estimation. A.n extensive knowledge of the past 

mortality behavior of the same or a similar property forms a useful part 

of the information for life estimation. The process of aggregating and 

analyzing historical data to obtain this knowledge is called life 

analysis. 

Depreciation 

W. C. Fitch, after an extensive study, formulated a general definition 

of depreciation (6, p. 76); 

Depreciation is the decrease in the number of available units of 
service which a unit of property or group of property units can 
be expected to render. 

Three basic concepts of depreciation are frequently recognized: cost, 

value, and physical condition (6, p. 10; 20, p. 175)» Fitch states formal 
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definitions of cost-depreciation and value-depreciation (6, pp. 76-77): 

Cost-depreciation is the decrease in the available units of 
service expressed as a function of the cost of the property. 

Value-depreciation is the change in the present worth of the 
anticipated returns from the services to be rendered by a 
property. 

and summarizes all three basic concepts as (6, p. 10): 

Cost-depreciation is the allocation of the purchase price over the 
life of the equipment. Value-depreciation is the change in 
anticipated benefits between two points in time. . . . physical 
condition is an estimate of the percent of the tangible decay of 
a property. 

Bonbrlght mentions a fourth concept of depreciation (2, p. I85): 

". . . the difference between the present worth of the old and 
obsolescent asset- and. the. pressent worth of the hypothetical, 
new and modern asset." 

The Federal and State governments generally require the use of the 

cost concept of depreciation for the purpose of estimating income tax 

liability. Rate regulation agencies may utilize the cost or physical 

condition or difference in value concepts and/or some combination(s) of 

the four concepts of depreciation (10, p. 29). The pertinent constitu­

tion, statutes, and court decisions and the policies and decisions of the 

particular regulatory agency may prescribe which concept(s) is appropriate 

for the agency and the regulated business to use for regulatory purposes. 

Management may use whichever concept or combination of concepts they deem 

appropriate for making a particular management decision. 

Depreciation calculations generally require, to a greater or lesser 

extent, estimates of one or more of the mortality characteristics of the 

property. The mortality characteristics specifically referred to are the 

probable average service life of a property group, or the probable service 
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life of a unit of property, and the retirement or mortality dispersion 

pattern of a property group. Winfrey defined probable service life and 

probable average service life as (28, p. 12): 

The probable service life of an individual unit is that period of 
time extending from its date of installation to the forecasted 
date when it probable will be retired. 

The probable average service life of a group of individual units 
is the average of the probable service lives of the units of the 
group. 

The retirement dispersion pattern refers to the distribution of the ages 

at retirement of the units comprising the property group. Probable 

average service life can be calculated from the probable retirement 

dispersion pattern; the reverse is not true. 

Cost-depreciation requires estimates of one or more of the mortality 

characteristics of the property. Value-depreciation does not directly 

require estimates of any of the mortality characteristics of the property; 

however, the process of estimating the anticipated benefits may utilize 

estimates of one or more of the mortality characteristics. Physical con­

dition is estimated, generally, by an inspection of the property (20, 

p. 178). Therefore, estimates of the mortality characteristics are not 

directly involved in estimating depreciation in the sense of physical 

condition. 

The word depreciation will be used in the sense of cost-depreciation 

in the remainder of this dissertation, unless otherwise noted, to simplify 

the discussion. 

The units of service which a property can be expected to render are 

generally measured in terms of years of service or units of production. 
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Years of service are the most frequently used measure (4, p. 30) and are 

used as the measure of service life in this dissertation. 

Annual depreciation is that portion of the cost of a property charged 

as an expense (and, hence, charged against revenue) for a year. Accrued 

depreciation as of a given date is the total depreciation of the unretired 

property charged as an expense from the time of•installation of the 

property until that date. 

A more extensive treatment of depreciation may be found in Fitch (6), 

Grant and Norton (8), and îferston, ̂  a2. (20). 

Life Estimation 

The process of life estimation can he divided into two parts. The 

first part is the collection of relevant information. The second part is 

the application of expert judgment to the information available to estimate 

the mortality behavior of the property. 

Relevant information includes, but is not necessarily limited to, the 

results of a life analysis and analyses of economic trends, technological 

progress, and policies and decisions of governmental bodies and agencies 

and of management. While trends based on historical information can usually 

be extended and extrapolated, a degree of uncertainty is present in any 

attempt to predict the future; hence, expert judgment is an essential part 

of life estimation. 

While the author strongly recommends the development and use of 
retirement data and survivor curves as the basis of estimating the 
probable life of property units, he does not mean to infer that 
expert judgment should be done away with in favor of pure statistical 
treatment. Each individual item, each group of items, and each 
property or company must be dealt with in the light of its present 
condition, its character and amount of service or production, and 
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its relation to the present and probable future economic trends, 
art of manufacture, and management policies. Tables of probable 
service lives, type survivor curves, and statistical methods are 
simply means of recording past experience to use in predicting 
w h a t  t h e  f u t u r e  s e r v i c e  m i g h t  b e  ( 2 8 ,  p .  9 ) .  

Life Analysis 

Life analysis is the process of aggregating and analyzing the his­

torical record of property for the purpose of obtaining information about 

the mortality characteristics of the property. Life analysis and life 

estimation are different processes since the former is concerned with an 

analysis of the past whereas the latter is generally concerned with a pre­

diction of the future. The end result of a life analysis is an estimate 

of the probable average service life and, if possible, of the probable 

retirement dispersion pattern, as well as a knowledge of any discernable 

trends in either, experienced or being experienced by the property under 

study. 

The plant property records are a primary source of data for studying 

the past mortality experience of property. A separate account may be kept 

for each individual unit of property or two or more individual units may 

be combined into a group and a record kept of the units as a group. A 

group account in which the installations in a single year of a given 

type(s) of property are recorded is called a vintage account and the group 

of units is called a vintage group. A group account in which the installa­

tions (of the same type or types of property) of successive years are 

recorded is called a continuous or "open-end" account. The ensuing dis­

cussion is based on the life analysis of group property. 
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A complete property record would permit determination of at least 

the following: 

1. The amount of property installed each year,(i.e., the amount 

installed each year as a vintage group), 

2. The age at retirement of the property already retired from each 

vintage group, and 

3. The total amount of property in each vintage group surviving at 

the "beginning of each year (plant balance of each vintage 

group at the beginning of each year). 

A particular property record imy not contain all of the above information. 

Sometimes the only information available is the amount of property 

installed each year, the amount retired each year, and the total plant 

balance each year. 

The extent of the property data available affects the choice of 

methods of analyzing the data. The statistical methods of life analysis 

are often divided into two categories : the turnover methods and the 

actuarial methods. The turnover methods require data on the amount of 

property installed each year, the amount retired each year, and the total 

plant balance each year. The actuarial methods generally require a com­

plete property record (as described in the preceding paragraph). 

The turnover methods, with one exception, yield only an indication 

of the probable average service life. The simulated plant balance method, 

often classified as a turnover method since the data requirements are 

similar, does yield estimates of both probable average service life and 

probable retirement dispersion pattern. 
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Estimates of both the probable average service life and the probable 

retirement dispersion pattern can be obtained by use of the actuarial 

methods. The tabulation of the raw data frequently results in an incom­

plete, original life table. A life table is the amount, percent or propor­

tion of property surviving at each age; an original life table is a life 

table calculated from the observed data. Before the probable average 

service life and the probable retirement dispersion pattern can be esti­

mated, the original life table generally must be smoothed and extended to 

zero survivors or zero percent surviving. Even if the original life table 

is complete, the common practice is to smooth the original life table and 

use the interpolated values to estimate the probable average service life 

and probable retirement dispersion pattern. 

A commonly used technique of smoothing and of extending (if necessary) 

the life table is by fitting a multiple linear regression equation, 

generally a polynomial, to the retirement ratios by the method of least-

squares (4, p, 5). The retirement ratio for an age interval is the amount 

of property, in terms of proportion, percent, units, or dollars, retired 

during the age interval divided by the amount of property surviving at the 

beginning of the age interval. A smoothed life table can be calculated 

from the retirement ratio polynomial by starting with the amount installed 

(l.OO, 100%, units, or dollars) and successively multiplying the amount 

surviving at the beginning of the age interval by one minus the inter- " 

polated or extrapolated retirement ratio for the age interval to obtain 

the amount surviving at the end of that age interval. 
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Amount surviving _ /Amount surviving-,/̂  _ Retirement ratio for age\ 
at age X + 1  ̂ at age X interval X to X + 1 

Tlie linear regression equation is (l6, pp. 382-383) 

3(y|x.) = cf + px 
J J 

y = dependent variable 

Xj = independent variable 

= parameters 

which is estimated "by 

E(y|x ) = a + bx 
J J 

y. = a + bx. + e. 
TJ J J 

a = estimate of o> 

b = estimate of p 

"fcll 
y. = j value of the dependent variable 
J 

th. 
X. = j value of the independent variable 
J 

e. = deviation of the observed value from the expected 
J 

th 
value of the j observation given that x̂  is the 

independent variable 

In the situation of fitting a polynomial to the retirement ratios 

X. = age interval 

t h 
y. = observed retirement ratio for the j age interval 

The unweighted least-squares method of fitting a linear regression 

line yields linear unbiased estimators of a and p, which have the minimum 

variance amongst the class of all linear unbiased estimators, if the 

following assumptions can reasonably be made (16, pp. 382-38̂ ): 

1. The X. values are controlled and/or measured without error. 

2. The regression of y on x is linear, that is, E(y|x.) = a + px.. 
J J 
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3. The deviations y. - E(y|x.) are mutually independent. 
J J 

h. The deviations have the same variance (a , not usually known 

exactly) whatever be the value of . 

A fifth assumption is sometimes needed (l6, p. 38̂ ): 

In order to apply many standard statistical techniques, the further 
assumption that the conditional distribution of y, given x, is 
normal is needed. 

This means the deviations mentioned in assumptions three and four, abovê  

must be assumed to be normally distributed if ". . . many standard 

statistical techniques ..." are to be used. Also, if this assumption 

(i.e., Oj ̂ rr(0,CT̂ )) is valid, the least-squares method will yield unbiased 

estimators having the minimum variance amongst the class of all unbiased 

estimators (9, pp. 113-11̂ )• 

The multiple linear regression model is of the form (16, p. 413) 

E(ylx̂ , Xg, . . %%) = a + + PgXg + • • • + 

2 
where the x̂  may be powers of the observed x's, such as Xg may be x̂ , x_ 

Q 
may be Xp etc. The assumptions of the multiple linear regression model 

are similar to those of the simple linear regression model listed above. 

The fourth assumption, above, is often called the assumption of 

homoscedasticity„ If the assumption of homoscedasticity is invalid and if 

the variances are not known quantities, the least-squares estimators of the 

polynomial coefficients can be shown to be unbiased only under certain 

conditions; very little can be said about the variance properties of these 

estimators (9, p. 4lO). 

The following example is presented to illustrate the plausibility of 

the non-constant variance of the retirement ratios from age interval to age 

interval (i.e., that the variance of the deviation y. - E(y|x.) is not a 
J J 

constant, where ŷ  is the observed value of the retirement ratio at age 



www.manaraa.com

10 

interval x̂ ). Fabricated data for each of three vintage groups are shown 

in Tables 1, 2, and 3* A composite of the retirement experiences of all 

tliree vintage groups is shown in Table 4. The three vintage groups are 

assumed to be three samples each of size 100 from the same parent popula­

tion of property; the only difference between the units, as they are put 

into service, is the year of installation. 

Table 1. Fabricated data for vintage group I 

Age, Age Age interval No. survivng No. retired Retire­
years interval. index number at beginning during age ment 

years of age interval, interval. ratio 
units units 

0 0-1 1 100 10 0.100 

1 1-2 2 90 15 0.167 

2 2-3 3 75 25 0.333 

3 3-4 4 50 25 0.500 

4-5 5 25 15 0.600 

5 5-6 6 10 10 1.000 

6 6-7 7 0 --

Table 2. Fabricated data for vintage group II 

Age, Age Age interval No. surviving No. retired Retire­
years interval, index number at beginning during age ment 

years of age interval. interval, ratio 
units units 

0 0-1 1 100 8 0.080 

1 1-2 2 92 15 0.163 

2 2-3 3 77 23 0.299 

3 3-4 4 54 29 0.537 

4 4-5 5 25 13 0.520 

5 5-6 6 12 10 0.833 
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Table 2 (Continued) 

Age, Age Age interval No. surviving No. retired Retire-
years interval, index number at beginning during age .ment 

years of age interval, interval. ratio 
• units units 

6 6-7 7 2 2 1.000 

7 7-8 8 0 

Table 3» Fabricated data for vintage group III 

Age, 
years 

Age 
interval, 
years 

Age interval 
index number 

No. surviving 
at beginning 
of age interval, 

units 

No. retired 
during age 
interval, 
units 

Retire­
ment 
ratio 

0 0-1 1 100 13 0.130 

1 1-2 2 87 18 0.207 

2 2-3 3 69 29 0.420 

3 3-4 4 40 " 28 O.7OQ 

4 4-5 5 12 12 1.000 

5 5-6 6 0 — 

Table 4. Composite retirement experience of all three vintage groups 

Age, 
years 

Age 
interval, 
years 

Age interval 
index number 

No. surviving 
at beginning 
of age interval, 

units 

No. retired 
during age 
interval, 
units 

Retire­
ment 
ratio 

0 0-1 1 300 . 31 0.103 

1 1-2 2 269 48 0.178 

2 2-3 3 • 221 77 0.348 

3 3-4 4 144 82 0.569 

4 4-5 5 62 40 0.645 

5 5-6 6 22 20 0.909 
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Table 4 (Continued) 

Age, Age Age interval Ho. surviving No. retired Retire­
years interval. index number at beginning during age ment 

years of age interval. interval, ratio 
units units 

6 6-7 7 2 2 1.000 

7 7-8 8 0 - -

The graphs of the retirement ratios versus the age interval index 

numbers are shown in Figures 1, 2, and 3. Figure k- shows the retirement 

ratios for all three vintage groups plotted on the same graph. 

Several characteristics of retirement ratios should, perhaps, he 

noted: 

1. Retirement ratios must he equal to or greater than zero and equal 

to or less than one. 

2. The retirement ratio values of a vintage group generally increase, 

although not necessarily monotonically, as the age interval index 

number (age interval) increases. 

3. A retirement ratio of one occurs only when all of the property 

of the vintage group surviving at the beginning of the age 

interval is retired during the age interval. 

4. The observed retirement ratio at a given "̂ ge interval is dependent, 

to some extent, upon the retirement ratios for all preceding age 

intervals because the number of units of a vintage group sur­

viving at the beginning of an age interval (the denominator of 

the retirement ratio) is the number of units originally installed 
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Figure 1. Retirement ratios for vintage group I 
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Figure 2. Retirement ratios for vintage group II 
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Figure 3» Retirement ratios for vintage group III 
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less the numbers of units retired during preceding age intervals 

(the numerators of the retirement ratios of the preceding age 

intervals). 

5. The several retirement ratios at each age interval (one from each 

vintage group) are not necessarily identical (see Figure 4), thus 

suggesting the possibility of a vertical dispersion or distribu­

tion of retirement ratios at each age interval. 

The percent change in the retirement ratio, for a given change in 

the amount of property retired during the age interval, is dependent upon 

the amount of property surviving at the beginning of the age interval 

(the denominator of the retirement ratio). If 

d̂  = denominator of the retirement ratio for the k age interval 

then 

di ̂  d̂  ̂  ds ̂   ̂d̂  k = 1, 2, . . K 

Therefore, a given change in the amount of property retired during an age 

interval will generally cause a larger relative change in a retirement 

ratio if the retirement ratio is for a later age interval than if the 

retirement ratio is for an earlier age interval. 

Figure 5 is the usual retirement ratio plot of the combined experience 

of all three vintage groups. The retirement ratio for the k age interval 

is calculated as the sum of the retirements from all vintage groups during 

the k̂  ̂age interval divided by the sum of the amounts surviving from all 

vintage groups at the beginning of the k age interval. Thus, Figure 5 

illustrates a "horizontal" dispersion of retirement ratios across age 

intervals. The possibility of a "vertical" dispersion of retirement 
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Figure 5- Composite retirement ratios 
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ratios within each age interval, in addition to the horizontal dispersion 

of retirement ratios across age intervals, is indicated in Figure 4. 

Figure 4 also points up the possibility that the variance of the vertical 

distribution of retirements within an age interval is not necessarily the 

same as the variance of the vertical distribution of the retirement ratios 

within seme other age interval. 

The fourth assumption of the unweighted, least-squares method is 

(l6, p. 383; see p. 9 of this dissertation); 

These deviations (i.e., yj - E ( y j x . ) )  have the same variance • • • 
whatever be the value of x ..  ̂

3 

As applied to fitting a polynomial to the retirement ratios, the above 

assumption means that the variance of the vertical distribution of retire­

ment ratios at each age interval is assumed to be a constant (i.e., to be 

the same from age interval to age interval). 

The subject of this investigation is the possible non-constant 

variance of the vertical distribution of retirement ratios and the effect 

of such on the method of fitting a polynomial to the retirement ratios. 
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OBJECTIVES OF INVESTIGATION 

The smoothingJ extending, and interpolating or extrapolating of 

retirement ratios is a method frequently used in life analysis to obtain 

a smoothed, complete life table or survivor curve. A number of ass'omptions 

(loj pp. 382-384; see pp. 8-9 of this dissertation) must be made if the 

unweighted, least-squares method of fitting a polynomial to the retirement 

ratios is to yield linear unbiased estimators of the polynomial coefficients 

having the minimum variance amongst the class of all linear unbiased 

estimators. Two of these assumptions, the third and the fourth, may not 

be valid. The third assumption (16, p. 383) appears to be invalid in view 

of the fact that the denominators of the retirement ratios, except the 

denominator of the retirement ratio for the first age interval, are 

dependent upon the preceding numerators. Hoivever, this third assumption 

is not a subject of investigation in this dissertation. 

The subject of this investigation is the validity of the fourth 

assumption (of homoscedasticity) and a better means of fitting a polynomial 

to retirement ratios than the presently used, least-squares procedures 

if this assumption is invalid. A solution to the problems engendered 

by the failure of assumption four is dependent upon ascertaining the 

vertical distribution of the retirement ratios at each age interval and 

estimating certain parameters of these vertical distributions. 

The specific objectives of this dissertation are: 

1. To investigate the vertical distribution of retirement ratios at 

each age interval. 
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2. To investigate methods of obtaining estimators of certain 

parameters of the vertical distribution of retirement ratios 

at each age interval. 

3. To develop, if possible, a more exact method of fitting a 

polynomial to the retirement ratios based on the findings in 

(1) and (2) above. 
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PJSESENT ACTUARIAL METHODS OF LIFE ANALYSIS 

A life analysis provides information for life estimation. The use­

fulness of the information is dependent mainly upon the appropriateness 

and reliability of the property data analyzed, the models used in analyzing 

the data, and the interpretation of the results. At test, the results of 

a life analysis provide more or less accurate estimates of the past 

mortality characteristics of the property in question. These results 

should he used in life estimation only to the extent that the past 

mortality "behavior of the property is expected to he similar to the future 

mortality behavior of the property. 

Two basic assumptions of life analysis, regardless of the methods 

used, are: 

1. The mortality behavior of a property follows some "law of 

mortality" expressible in terms of time or some other variable. 

2. The past mortality behavior of a property is indicative, to a 

greater or lesser extent, of the expected future mortality 

behavior of the property. 

Although the "law of mortality" is generally expressed in terms of time, 

it could be expressed in terms of units of production or some other 

suitable variable(s). Tlie first assumption implies that no extraneous 

variables make the relationship between retirements and time (or other 

variable) of little consequence. The extent to which the second assump­

tion is incorrect is usually considered in the life estimation process. 

Several methods of life analysis are called actuarial methods because 

of their similarity to methods developed by life insurance actuaries to 
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study human mortality (8, p. 44). The process of life analysis utilizing 

an"actuarial method(s) can "be roughly divided into three broad steps: 

1. The selection of the property data to be analyzed and the 

aggregation of this data in a useful form. 

2. The selection of the method(s) of obtaining the original life 

table or original survivor curve (or a derived curve, such as a 

retirement ratio curve), the selection of the particular data 

set(s) to which the method(s) is to be applied, and the 

application of the method(s) to the data set(s). 

3. The selection and application of a method(s) of smoothing and 

a method(s) of extending (if necessary) the original life table 

(or original survivor curve or some other curve), and the inter­

polation and/or extrapolation of values to obtain a complete, 

smoothed life table. 

In a life analysis study of a property, different methods of obtaining 

an original life table, etc. may be applied to different data sets and the 

resulting original life tables smoothed and extended by one or more 

methods to provide information about trends in mortality behavior. 

Related Concepts 

The actuarial methods of life analysis are based on statistical 

concepts. A basic concept of statistics is a probability distribution. 

A table of the possible values which a chance event may assume 
with a corresponding probability for each value is called a 
probability distribution for the parent population (l, p. 19). 

A mathematical function representing a probability distribution is called 

a probability distribution function (distribution function). The 
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probability of obtaining some value for an event which is equal to or 

less than a specified value is called the cumulative distribution; a 

mathematical function representing the cumulative distribution is called 

a cumulative distribution function. Distribution functions, and the cor­

responding cumulative distribution functions, may be either discrete or 

continuous functions; the appropriate form is dependent on whether the, 

values the chance variate can take on are discrete or continuous. 

Tlie requirements of a function to be a discrete probability function 

are {2k, p. 33) 

1. f(x. ) - 0 

N 
2. E f(x.) =1 i = 1, 2, ' ' N 

i=l 
where 

= the possible values which the chance variate, x, may assume 

. f-(x̂ ) = the probability that x takes on the values x̂ ; 

i = 1, 2, • ' ', N 

Then the cumulative distribution function, F(a), is 

F(a) = Pr (x — a) 

= Zf(Xi) 
i=l 

where "a" is some specified value of x. Also 

F(a, b) = Er(a ̂  x — b) 

b 
= 2 f(x.) 
i=a 

For the continuous distribution case, the assumptions are (24, p. 33) 

1. f(x) ̂  0 

2- jTco 1 
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Then 

F(a) = Pr(x - a) 

= Jîm f(x)ax 

F(a, h) = Er(a — x h) 

= la f(x)ax 

The mathematical expectation of x, denoted as E(X), is the mean or 

average value of x. E(X) is the sum of the products of the distance of 

each x̂  from the origin times the probability that the x̂  will occur 

(i.e., the first moment of x about the origin). For the discrete case 

N 
E(X) = E X f (x. ) 

i=l 
and for the continuous case 

E(X) = X f (x)dx 

2 
The variance of x, denoted as a j is the second moment of x about the 

mean, E(X). Let 

LI = E(X) 

Then 

= E(X - |J,)^ 

which for the discrete case is 
p rr p 

0- = Z (X. - n) f(x. ) 
i=l 

and for the continuous case is 

= jTco (x - f(x)dx 

If the individual service lives (ages at retirement ) of the units 

comprising a property group are represented "by x̂ , then f(x') is the 

distribution function of the service lives. Service life could be 

measured on a discrete scale or on a continuous scale. The mathematics 



www.manaraa.com

26 

of both the continuous case and the discrete case are presented because 

both the concept of a continuous scale and the concept of a discrete 

scale have proven to be useful. The presence of a summation symbol, Z, 

in an equation indicates that service life is being considered as a 

discrete variable and the presence of an integral symbol, J, indicates 

that service life is being considered as a continuous variable. 

Even complete property accounting records generally show only the 

number of units in a vintage group and the year of installation of the 

vintage group and not the exact time that each unit of the vintage 

group was installed (and similarly for the time at which units are 

retired). For the discrete case, a common set of assumptions (often 

referred to as the half-year convention) is (20, pp. l47-l48): 

The assumption is made that the installations of a given 
calendar year were made somewhat uniformly throughout the year; 
therefore, the assumption that all the units were zero years old 
on July 1 of the year of installation is appropriate. The average 
age of retirements would then always be the integral years 
1, 2, 3, etc. But retirements having an average age of, say 
3 years, must be composed of units having specific ages varying 
from 2 1/2 to 3 1/2 years. Ages for specific reference in the 
calculation of the survivor curve or for a January 1 inventory 
date must be expressed on the l/2-year basis. 

Another customary assumption is that property retired during the 
same calendar year as it was installed is retired during the age 
interval 0-0 1/2, or at an average age of 0 l/4 year. 

Therefore, for the discrete case only, let 

x/ = age index number 

x̂  = age 1/4 years 

Xg = age 1 year 
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Xg = age K-1 years 

= maximum age index number 

x̂  = age interval index number 

x̂  = age interval 0 to l/z years 

Xg = age interval l/g to 1 l/2 years 

Xg = age interval (K - 1 I/2) to (K - I/2) years 

f(x') = distribution function of the service lives 

f (x̂ ) = probability of any unit being retired at age x̂  

f(x) = distribution function, by age intervals, of the service lives 

f(x̂ ) = probability of any unit being retired during age interval k 

Also, let 

u) = maximum life when measured on a continuous scale 

The average service life of a property group, ASL, is defined as the 

average age of all units at retirement (Figure 6). 

ASL = E(X) 

K 
= k = I3 2 ,  •  •  • ,  K (1) 

where 
K 
E fU) = 1 

k=l 
Also 

ASL = Jq X f(x)dx 0 ̂  X — m 

•Die cumulative distribution function-(Figure 7) is 
a 

F(a) = S f (x, ) 
k=l  ̂

or 

F(a) = f(x)dx 
'' o 
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Figure 6. Frequency distribution, of retirements 
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Figure 7. Cumulative distribution of retirements 
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where 

a = some specified age 

The survivor function, or survivor curve, y(x), represents the 

proportion of units surviving at any age (Figure 8). 

y(a - §) = 1 - E f{x/) 
k=l 

or 

y(a) = 1 - f(x)(ix 

Also, since 
K 
Z f(x/j = 1 
k=l  ̂

f(x)dx = 1 

Then 

1 % 
y(a - p) = • 2 f(%/) 

k=a+l 

y(a) = f(x)d.x 

For example 

y (3 - f) = y(2 1/2) 

3 
=  1 - 2  f ( x / )  

k=l  ̂

= 1 - f(x̂ ) - f(x̂ ) - f(x̂ ) 

= 1 - retirements of average age l/k - retirements of 

average age 1 - retirements of average age 2 

= survivors at age 2 l/2 
K 

= Z f(%/) 
k=a+l 

= f(xĵ ) + f(xp + . . . + f(x^) 
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= retirements of average age 3 + retirements of average 

age 4 + ' • • + retirements of average age K - 1 

The area under the survivor curve can be approximated by numerical 

integration and is equal to the average service life (as will be shovm). 

In this particular case, finding the area under the curve using horizontal 

area strips is convenient. The difference in height of two successive 

points on the survivor curve (ages 0 and 0,5, ages 0.5 and 1.5, etc.) is 

the width of the horizontal area strip and is just f(x̂ ). The average 

height of the horizontal area strip is the distance from the y axis to 

mid-way between the two points on the survivor curve (or .one-half of the 

sum of the ages at the beginning and end of age interval k). 

A3L = (l/k) f(x̂ ) + (l) f(x2) + • • • + (K - l) f(x̂ .) 

Equation 2 is the same as equation 1, thus showing that the area under 

the survivor curve is equal to the average service life. The average 

service life can also be calculated as the first momient of the frequency 

distribution about the origin. 
K 

ASL = Ex/ 
k=l 

= (1/4) f(x̂ ) + (1) f(xp + 0 . . + (K - 1) f(x̂ ) 

The retirement ratio, r̂ , for an age interval k is defined as 

_ number of units retired during age interval k 
k number of units surviving at the beginning of age interval k 

= proportion retired during age interval k 
proportion surviving at beginning of age interval k 

In the discrete case,'f(x̂ ) represents the proportion of the original 

fW) 
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placement- of units retired during the age interval a. 

r = -
a-1 

1 - Z f(%k) 
k=l 

K 
s i{^) 
k=a 

The retirement ratio for the continuous case is 

 ̂ 1 - r®" f(x)dx 
0 

_ f(ajdx 
y(a) 

= - a[y(a)l 
y(a) 

The survival ratio, ŝ , for an age interval a is defined as 

_ number of units surviving at end of age interval a 
a number of units surviving at "beginning of age interval a 

_ proportion of units surviving at end of age interval a 
proportion of units surviving at beginning of age interval a 

K 
Z f(Xk) 

k=a+l • 
K 
Z f(Xk) 

k=a 

For the continuous case 

s = y(a) + d[y(a)] 
a y (a) 

since the number or proportion of units retired during the small interval 

of time after y(a) is - d[y(a)]. 
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or 

The survival ratio is also equal to one minus the retirement ratio. 

fCx.) 
s = 1  ̂
a K 

Z f(%k) 
k=a 

K 
S f(% ) - f(x ) 

- k=a  ̂
K 
Z fCx.) 

k=a 

K 

s 

= y(a) + d[y(a)l 

Expectancy is defined as (28, p» 12): 

. . . that period of time extending from the observation age 
(usually the present) to the average of the forecasted dates 
when the units probably will be retired. 

Expectancy is the future average years of service expected from the units 

surviving at the observation time. The expectancy at any age, is 

_ area under the survivor curve to the right of age a - 1/2 

a - 1/2 proportion surviving at age a - 1/2 

K 
Z (k - a - 1/2) f(x.) 

_ k=a+l 

k=a+l 

or 

K 
z f(%k) 
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 ̂ .1% - .Ç f(x)ax]ite 

1 - .r: 

_ 11 
y(a) 

The probable life of the uaits surviving at any age, is 

defined as 

\ - 1/2 = ̂  - 1/2 + \ . 1/2 

If the frequency with which occurs (rather than the proportion 

retired at an average age of x̂ ) is known, the distribution function, 

cumulative distribution function, average service life, etc., my be 

stated as follows for the discrete case. Let , 

f (x̂ ) = frequency with which x̂  occurs 

x̂  = average age at retirement (includes the ages x- l/2 to 

+ 1/2) 

Then 
f (<) 

= K 

2 f(<) 
k=l 

= proportion retired at an average cge of x̂ ; the 

distribution function 

Z f(%[) 

F(a)=^ 

z fCx:) 
k=l  ̂
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ASL = 
K 
Z f(Xk) 
k=l  ̂

The nuiriber of units surviving at any age is 

y'(a - 1/2) = Z ffxTj - Z f(x") 
k=l  ̂ k=l  ̂

The proportion surviving at any age is 

z fCc:) - z f(%r) 
y(a -.1/2)  ̂

z fCxT) 
k=l  ̂

Z f(x") 
= 1 %=! 

K 
z f(%:) 
k=l  ̂

Also 

r =  ̂ k=l  ̂
a K K 

Z f(xf)/ Z f(%;) 
k=a k=l  ̂

Z ?(%%) 
k=a 

K K 
Z f(x̂ )/ Z f(x̂ ) 

k=a+l k=l 

z fCxT)/ z f(%;) 
k=a  ̂k=l  ̂

K 
Z f(%%̂  

_ k=a+l 

K 

k=a  ̂
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Z  [ ( k  -  a  -  l / 2 ) [ f ( x ; ) /  Z  
„ ^ k=a+i k=l  ̂
a - 1/2 K K 

k=a+l k=l 

Z (k - a - 1/2) f(x/) 
= k=a.+l 

K 
Z 

k=a+l 

^a - 1/2 " * ^a - 1/2 

The amount surviving at any age is often expressed as a percent. 

The percent surviving can be calculated by multiplying the proportion 

surviving by lOOfo. 

Mathematical expressions for the continuous case can be derived in 

a similar manner. 

Selection and Aggregation of Property Data 

The data to analyze for the purpose of predicting the mortality 

behavior of a property are, generally, the historical data of that 

property. Certain assumptions are generally me/̂ .e about the property 

data : 

lo Historical data on the same or a similar property group are 

available, 

2. The property group is composed of homogeneous units or of 

different units in substantially the same relative amounts as 

are expected in the future. 

3. Sufficient data in a usable form are available to make an 

actuarial life analysis. 

f(<) 
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Historical data on the property which is the subject of a life 

analysis may not he available or may be unusable. In this case, the 

analyst may analyze the historical data of a property which he thinks 

will exhibit mortality behavior similar to that of the property which is 

the subject of the life estimation process. The results of a study of a 

similar property should be given only such weight in the life estimation 

process as is appropriate. Another, infrequently used alternative is to 

take a complete inventory of the property. A third alternative is to 

proceed directly to the life estimation process without making a life 

analysis study; the analyst's knowledge and his experience in life analysis 

provides the type of information which is usually obtained through life 

analysis. 

The subject of the homogeneity of a property, for life analysis 

purposes, involves at least two areas; (l) the physical characteristics 

of the property and (2) the measure of the amount of property. A property 

group account may include several different sizes and types of property. 

Even if only one size and type of property is recorded in a given account, 

heterogeneity may arise from including property manufactured in different 

years and which may be different because of modifications in materials 

and/or design. 

Two common measures of the amount of property are physical units and 

dollars, the latter being the most frequently used measure. The age at 

retirement of one physical unit may be (and often is) independent of the 

age at retirement of any other physical unit. On the other hand, the 

physical units comprising a vintage group are often heterogeneous because 

of their different physical characteristics. 
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Dollars are homogeneous in the sense that one dollar is numerically 

equal to another dollar. Thus, dollars provide a common scale for 

measuring amount of property. However, the number of dollars invested in 

one item of a property group generally is not the same as the number of 

dollars invested in another item of the property group. The age at 

retirement of one dollar is rarely independent of the age at retirement 

of some other dollar(s). Hence, dollars are not independent random 

variables; a fact which might inhibit development of a statistical pro­

cedure for fitting polynomials to retirement ratios. 

Howard (15) compared the average lives and the accrued depreciation, 

for group property, computed on (l) a unit basis and (2) a dollar basis. 

Data on the mortality experience of freight cars were used. Complete 

physical-unit data were available for the years 1918 through 19̂ 5» The 

only dollar data available were "... the total dollars remaining in 

Service January 1 of each year, the total dollars placed in service each 

year, and the total dollars retired from service each year" (l5, p. 19). 

Therefore an average unit cost for each unit installed in a vintage year 

was calculated by dividing the total dollars placed in service that year 

by the number of freight cars placed in service that year. The results 

of his study indicated that the average service lives of the freight cars 

were, at most, one-half year greater when calculated on the dollar basis 

than when calculated on the unit basis. The difference in average 

Service lives on a unit basis and on a dollar basis was attributed to the 

greater weight given to more recent placements because of a rising price 

level. 
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The results are indicative of the differences to be expected because 

of price level changes. They are not indicative of the differences to 

be expected because of between-unit price differences because of his 

averaging of unit costs within a year. 

The records of the property group selected for study must be care­

fully reviewed. The data may need to be adjusted for a number of reasons, 

such as: the type(s) of property included in the property group has been 

changed from time to time or accounting practices have been changed from 

time to time or data on properties which have been sold or acquired as 

used, but useful, property have been included in the record (5j pp. 7-10)• 

Despite the importance of this factor, and the fact that the time 
required to correct and adjust the books of account is ordinarily 
many times the manhours required to make the statistical analyses 
themselves, the literature on this subject is not very helpful. 
It is replete with warnings that early book records are often 
incomplete, that accounting distinctions between capital and 
maintenance charges have undergone changes, that the type of 
equipment represented by a given plant account may change from one 
generation to the next, and so forth, but it contains very little 
by way of specific suggestions for approved treatment of the raw 
data to make them suitable for analysis (5, p. 10). 

Original Life Table 

An original life table is a tabulation from the raw data of the 

amount of property surviving" from an original placement at each age. A 

plot of the amount surviving versus age (generally on rectangular 

Coordinate graph paper) is called an original survivor curve. 

The amounts surviving may be expressed as physical units, dollars, 

proportions, or percents. If the original life table or original survivor 

curve is expressed in terms of percents or proportions, a more direct 

comparison can be made between different life tables or survivor curves. 
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Percent surviving is commonly used and will be used hereafter unless 

otherwise noted. 

The original life table may be obtained from the raw data in at 

least five ways : individual-unit method, original-group method, composite 

original-group method, multiple original-group method, and annual-rate 

method (28, pp. 17-l8). The choice of method(s) to use is dependent on 

the data available, the purpose of the life analysis, and the type of 

information to be obtained in applying the method. As mentioned pre­

viously, one or more methods may be applied to several different data sets 

to obtain information about the mortality behavior of the property. 

The original-group, composite original-group, and annual rate methods 

require relatively complete historical data covering the years of 

experience of the vintage group(s) included in the analysis. The 

individual-unit and multiple original-group methods require less complete 

data but yield less useful results than the other three methods. These 

two methods are used, generally, only if the data available are insuffi­

cient to permit use of uf the other three methods. 

The results obtained by the application of these five methods to the 

historical data of property will usually be different. These differences 

in results are due to various factors, such as: 

1. Use of different data sets, 

• 2. Random variation in sample data, and 

3. Changes in the mortality behavior exhibited by the property group 

resulting from changes in those factors influencing the retirement 

of property. 
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Individual-unit method 

The individual-unit method can be used when the only data available 

are the amounts and ages at retirement of property retired during a 

calendar year or several adjacent calendar years. The retirements during 

the calendar year(s) are arranged in ascending order according to age at 

retirement. The sum of all such retirements is taken to be the total 

amount of property "surviving" at age zero. The percent surviving at 

each successive age or the percent surviving at the beginning of each 

successive age interval is the amount of the retired property that was 

retired at a later age. The original life table will always extend to zero 

percent survivng because only retired property is considered in calculating 

the table. 

The average service life obtained by numerical integration is the 

average age at retirement of those units retired during the calendar 

year(s) of observation, not the probable average service life of the 

property. If the property has not reached stability (i.e., no growth, 

no decline, and renewals approximately equal to retirements), the average 

age at retirement may not be a very good approximation of the probable 

average service life of the property. Similarly, the retirement disper­

sion pattern obtained may not be a very good approximation of the probable 

retirement dispersion pattern of the property. 

Original-group method 

Data required for the original-group method are: 

1. The amount of the property installed in a given year, a vintage 

group, and 
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2. The amounts of and ages at retirement of the property already 

retired. 

If the original life table is incomplete, the table or the corresponding 

survivor curve will have to be extended to zero percent surviving before 

the mortality characteristics can be ascertained. 

The calculated, probable average service life is the probable 

average service life of the particular vintage group. A study of 

successive vintage groups may indicate trends over time, if any, of the 

mortality characteristics of the property due to changes in the physical 

characteristics of the property. 

Composite original-group method 

The composite original-group method treats the combined mortality 

experience of two or more vintage groups as the mortality experience of 

a single group. Data requirements are similar to those of the original-

group method. If an incomplete, original life table is obtained, the 

table or the survivor curve must be extended to zero percent surviving 

before the mortality characteristics can be ascertained. 

This method is especially useful when only a relatively small amount 

of property is installed each year and/or the mortality experience of a 

single vintage group is erratic. The mortality characteristics obtained 

are composites of the mortality characteristics of the individual vintage 

groups included in the single combined group. 

A rolling-band study, a series of analyses of different composite 

groups, may indicate trends in the mortality characteristics of the 

property over time. Each successive composite group is formed from the 
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preceding composite group by eliminating the oldest (or youngest) vintage 

group in the composite group and adding the vintage group just subsequent 

to (or just preceding) the composite group. 

As the number of vintage groups included in the composite group 

increases, the mortality experience of the composite group tends to become 

less erratic. On the other hand, grouping a large number of vintage 

groups into a single group tends to mask trends in the mortality behavior 

of the property. 

Multiple original-group method 

The multiple original-group method requires data on the ages and 

amounts of the property surviving as of a given date. A table of the ages 

and amounts surviving, arranged in order of increasing age, constitutes 

the original life table. Percent surviving values can be calculated by 

using the amount surviving from the most recent vintage group as tte 

denominator of the fraction 

percent surviving at age x = Lro d»»*) 

If the percent surviving at any age exceeds 100^, when calculated in the 

above manner, the common practice is to reduce such values to 100%. 

Successive entries in the original life table may be larger or 

smaller than previous or subsequent entries because: 

1. Each vintage group provides one entry in the table, 

2. The amount of property surviving from a vintage group is related 

to the amount installed during that vintage year, and 

3. No consideration is given to the various amounts installed during 

each vintage year nor to the amounts already retired from each 
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vintage group. 

Unless the property has reached stability, the original life table and 

original survivor curve tend to be erratic and incomplete. 

Annual-rate method 

By this method, the original life table is calculated from that 

mortality experience of a number of vintage groups (called the placement 

band) exhibited.during a given period of years (called the observation 

band). The data required on each, vintage group included in the placement 

band are: 

1. The a,ges and amounts of property (in units or dollars) retired 

each year during the observation band of years and 

2. The amount of property surviving at the beginning of each year 

that the vintage group is included in the observation band. 

A retirement ratio for each age interval is calculated as follows 
1 th 
S property from the i vintage group 
i=l retired during the age interval x - l/2 

to X +1/2 during the observation band 
 ̂ of years 

X - 1/2 to X + 1/2 I 
E property from the i vintage group sur-
i=l viving at age x - 1/2 during the observa­

tion band of years 

i = index number of the vintage group 

= 1, 2, ' ' I 

The percent surviving at the end of each age interval can then be 

calculated by starting with IQQffo surviving'at age, zero and successively 

multiplying the percent surviving at the beginning of each age interval 

by one minus the retirement ratio for that age interval. 
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If sufficient data are available, the annual-rate method is generally 

one of the methods used to obtain original life tables in a life analysis 

because : 

1. The mortality experience of the most recent vintage years can 

be utilized, 

2. The mortality behavior of the property during the observation 

band of years reflects the effects of management policies, 

economic conditions, public requirements, etc., on the retirement 

of property during the observation band of years, and 

3. Both property surviving and property retired are considered. 

A rolling band type of analysis, in which the most recent (or earliest) 

year of the observation band is eliminated and the year preceding (or 

subsequent to) the earliest (or most recent) year of the observation band 

is added, is frequently made to study any trends in the mortality 

behavior of the property. 

Marston ê  a2. (20, p. 1̂ 4) suggest an observation band of three to 

thirty years. An observation band of only a few years permits the more 

recent mortality experience of the property to exert a greater influence 

on the values in the original life table. On the other hand, an original 

life table based on a narrow observation band is more likely to be erratic 

than an original life table based on a relatively wide observation band. 

Methods of Obtaining a Smoothed Life Table 

The original life table or original survivor curve is frequently 

incomplete because not all of the units of even the oldest vintage groups 

included in the data set have been retired. A complete life table or 
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survivor curve must "be obtained before the mortality characteristics of 

the property can be ascertained. 

The process of obtaining a complete survivor curve is composed of two 

steps: (l) fitting a smooth curve to the existing data and (2) extending 

the smoothed curve to zero percent surviving. A smooth curve may be 

fitted to the available data by a variety of methods, such as the various 

matching and mathematical methods. Extending the smoothed curve to zero 

percent surviving is a matter of judgment. Where the method of smoothing 

provides an "extension" of the curve, this extension is often accepted 

unless it is obviously incorrect. A more appropriate approach is to use 

judgment to select the most likely extension of the curve, the extension 

obtained from the smoothing step being considered as only one of the 

possible alternatives. 

Three general methods of fitting a smooth curve to the raw data are 

judgment, matching to type curves, and statistical methods. Even if a 

complete, original life table is obtained, a smooth curve is often fitted 

to the data, by one of the above methods, before the mortality characteris­

tics are ascertained. Marston et a2., with reference to estimating the 

probable average service life from the survivor curve, say (20, p. l64): 

The stub curve must be extended to zero percent survivng and the 
irregular curve should be smoothed before the average service life 
is computed. The objective is to obtain the most probable average 
service life. Such probability is indicated by a smooth complete 
survivor curve because such a smooth curve is the type most likely 
to result from observations at regular yearly intervals of large 
numbers of exposures to retirements. 
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Judgment method 

Smoothing the survivor curve "by judgment is accomplished by plotting 

the percent surviving at each age on rectangular coordinate graph paper 

and drawing, "by judgment, a smooth curve through thê points. Extension 

of the survivor curve to zero percent surviving is frequently accomplished 

by judgment, also. Obviously, no two analysts given the same set of 

points on a survivor curve are likely to draw exactly the same smooth 

curve ; however, the difference between two such smoothed curves may be 

negligible from a practical point of view. 

Numerical integration of the survivor curve yields the probable 

average service life. Additional calculations are required to obtain the 

expectancy and probable life at each age. Utilization of a high-speed 

digital computer would greatly reduce the time and effort involved in 

numerical integration and in subsequent calculations. 

Matching method 

The matching method involves comparing the original survivor curve, 

or a related curve, to a family of standardized curves and selecting that 

member of the family of curves which best fits or represents the data 

points. The criterion for determining which member of the family best 

fits the data is generally judgment. Other criteria may be used, such as 

selecting that member of the family of curves which minimizes the sum of 

the squares of the differences between the members of the family and the 

original survivor curve. 

The Iowa type curves are the most widely recognized family of standard 

curves (4, p. 19). Bulletin 125 Revised, of the Iowa State Uni'/ersity 
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Engineering Research Institute (28), contains all twenty-two of the Iowa 

type curves. The original eighteen Iowa type curves,, developed "by Winfrey 

and Kurtz (28, 29), are divided into three sets on the basis of the 

position of the mode of the frequency curve with respect to the average 

service life: six left-modal, seven symmetrical, and five right-modal. 

Couch (3) developed three origin-modal curves and, also, the data for the 

straight line survivor curve, in 1957» All four of these curves were 

designated as origin-modal. 

A common procedure in using the loifa curves is to first plot the 

original survivor curve points on transparent, rectangular coordinate graph 

paper. The standard Iowa curves are drawn on graph paper to a similar 

scale and for various average service lives. The plot of the original 

survivor curve points is superimposed on the graphs of the standard 

curves and the best fitting standard curve chosen by judgment. Winfrey 

suggests drawing a smooth curve, by eye, through the points of the original 

survivor curve before comparing the plot to the standard curves (28, 

p. 8 5 ) .  

Hoover (l4) investigated the possibility of using an analog computer 

to match standard curves to the original survivor curve points. The 

circuitry for the following types of standard curves or functions were 

developed: 

1. Iĉ v'a type survivor curves, 

2. Weibull survivor function, 

3. Gompertz-Makeham survivor function, 

k. Truncated normal distribution function, and 

5. Polynomial retirement ratio function. 



www.manaraa.com

50 

Hoover matched the Iowa type curves to the stub data developed by 

Cowles (4). The standard curves were successively generated and displayed 

on an oscilloscope to which was taped a plot of the original survivor 

curve points; the curve type and average service life were controlled by 

the computer operator. The best fitting standard curve was selected by 

judgment. Hoover concluded that the analog computer could be used to 

develop estimates of mortality dispersion pattern and average service 

life. 

Kimball (17) developed a family of curves (called the h-type curves) 

based upon a truncated normal distribution of retirements. The truncation 

of the frequency distribution occurs to the left of the average service 

life (i.e., at age zero). Hence, the h-type curves are generally left-

modal. The relatively high-modal curves are essentially symmetrical and 

have small variance. As the modal value decreases, the variance increases 

and the frequency distribution becomes more and more left-modal with the 

negative exponential as the limiting form. 

Although the h-system of life tables is of course not applicable 
to all cases of property retirements, for purposes of the general 
consideration of the behavior of property retirements in the 
broader aspects of the problem it is very useful to have such a 
system of life tables available in simple mathematical form. 
Tests of this system against several hundred life tables based 
on actual experience of utility property studied in the Bureau 
of Valuation of the New York Commission indicate very close 
agreement (17, p. 359)« 

Other families of type curves have been developed, such as the 

Patterson curves (22, pp. 60-68). 
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Statistical curve fitting methods 

Statistical methods of fitting a smooth curve to raw data exhibit a 

number of desirable characteristics : 

1. Any two analysts utilizing the same mathematical model and 

fitting technique to fit a smooth curve to the same raw data 

points should obtain the same results, 

2. High-speed digital computers can be utilized making it possible 

to analyze a large number of data sets in a relatively short 

period of time, and 

3. Human judgment is eliminated from the process of fitting a 

smoothed curve to the raw data points (this may, at times, be 

undesirable). 

Judgment must be used in selecting the mathematical model, the fitting 

technique, and the data sets to be analyzed. 

An extension of the smooth curve beyond the raw data points can be 

obtained from the mathematical function. Whether such an extension is 

reasonable or not is a matter of Judgment. Unfortunately, mathematical 

methods foster an opposite approach, that of accepting the mathematical 

extension unless the extension is clearly unreasonable. 

Mathematical functions can be fitted to a number of different, but 

related, sets of data points or ratios, such as the observed life table, 

the survival ratios, the retirement ratios, the retirement frequency dis­

tribution, or the cumulative retirements. 

A frequently used method of obtaining a smoothed life table is the 

retirement ratio method. A function, such as a polynomial or power 
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function, is selected by judgment and the function fitted to the retirement 

ratios by the method of least-squares ($, p. 15). Polynomials are, 

perhaps, the most frequently used functions and will be used for illustra­

tive purposes. 

The retirement ratio at an age interval, say k, is defined as 

\ ̂ K k = 1, 2, • • •, K 

k  ̂

f(xĵ ) = number of units retired during age interval k 

If the composite-original group method or the annual-rate method is used 

to obtain the original life table, the experience of several vintage 

groups must be combined to obtain the retirement ratio at each age 

interval. A weighted average retirement ratio (rather than the average 

of the several retirement ratios) is usually calculated. Let 

th 
= number of units surviving at the beginning of the k 

ij Jo. 
age interval from the i vintage group contributing 

"tjtl 
experience to be included in the k age interval 

retirement ratio 

= number of units retired during the k̂  ̂age interval from 

th 
the i vintage group contributing experience to be 

t h 
~ included in the k age interval retirement ratio 

Then 
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r. 
îk 

The weight given the retirement ratio of each vintage group is the number 

of units of that vintage group exposed to retirement at the "beginning of 

the age interval. 

r̂ k ~ weighted average retirement ratio 

Îk ̂ Ik ̂  ̂2k ̂ 2k Îk ̂ Ik 

But 

therefore 

r , = 
®2k + • • • + 

k 8%; + SgK + - ' . + 

i"" 

= i=l 
IK 
Z Z f (x ) 
i=l k 

The function to minimize, when fitting a polynomial to these retire­

ment ratios by the unweighted, least-squares fitting technique, is 

 ̂ , 2 2 
Mln Z [r . - (a + bxi + cx, + • • • ) ] 

a,b,c,etc. k=l k ic 

Quite often a weighted least-squares fit is made by weighting the 

weighted average retirement ratio at each age interval by the total number 
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of units surviving at the beginning of that age interval. 

Because the several plotted points do not carry equal weight, as 
pointed out "before, it may "be felt worth while to weight each 
according to the dollars or number of physical units involved 
(5, p. 15). 

The function to minimize for the weighted least-squares fit is : 

EI 
Min E [ E S., [r , - (a + bx^, + cx + • • • )] } 

a,b,c,etc. k=l i=l ̂   ̂

Only rarely is a polynomial of the fourth' degree, or higher, selected 

as best representing the retirement ratio curve (21, p. 248). 

Cowles (4) compared the results of smoothing and extending stub data 

by the matching method with those obtained by an unweighted, least-squares 

fit of the weighted average retirement ratios. Since the stub data was 

obtained by truncating complete, original life tables, the mortality 

behavior predicted by the two methods could be compared with the mortality 

behavior which actually occurred. Cowles concluded (4, p. 112); 

Under the conditions adopted, i.e., the stipulations for the 
analysis of the retirement data, the standard assumed, and the 
comparison bases used, no consistent superiority was enjoyed by 
either the Iowa type curve method or the use of orthogonal 
polynomials in estimating mortality dispersion. 

Scigliano (26)  fitted the Weibull hazard function to the retirement 

ratios of the stub data developed by Cowles. The form of the Weibull 

hazard function used was 

r(t) = 

r(t) = retirement ratio 

t = time 

01 = shape parmeter 

X = scale parameter 
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He used the . . Gauss-Newton iteration scheme for non-linear regression 

analysis . . ."to estimate a and \ (26,  p. 2l) .  

The stub curves were also fitted by matching (he used the results of 

Cowles' study) and by an unweighted least-squares fit of the weî ted 

average retirement ratios. The matching method and the polynomial retire­

ment ratio method appeared to yield somewhat better estimates than the 

Weibull hazard function (26, p. 99). However: 

. . .  i n  m o s t  o f  t h e  t h o s e  c a s e s  w h e r e  t h e  p r e s e n t  m e t h o d s  w e r e  
superior the computation method or data caused the error (26,  

p. 57). 

Either the Gompertz or the Gompertz-Makeham. equation can be fitted 

to the original survivor curve. The Gonipertz equation is (19, p. 112) 

and the Gompertz-Makeham equation is (19, p. 113) 

= ks V"" 

where 

L = percent surviving at age x 

k,8,g,c = constants to be determined from the data 

The Gompertz equation expresses the "force" of retirement as an increased 

inability of the property to "withstand" retirement as the age of the 

property increases. , The Gompertz-Makeham equation includes the.above 

"force" and, also, a constant, chance "force" of retirement unrelated to 

age. 

Nichols (23)  investigated moments of the frequency distribution as 

means of estimating average service life and dispersion pattern. The 

procedure developed for estimating these mortality characteristics 

involved both a mathematical model and a matching process. 
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IPwo moment ratios were utilized 

= second moment of the frequency curve atout the mean 

(mean)̂  

\ = third moment of the frequency curve about the mean g 
(mean) 

The standard moment ratios were calculated from the complete, standard 

lOTfa tĵ e curves and the standard Iowa type curves stubbed at various 

points. Plots were made of ]v̂  versus at each of the percent surviving 

points, versus percent survivng, ]ŷ  versus percent surviving, and 

versus percent surviving. 

The test data used were those obtained by Cowles (4) stubbed at two 

different levels of percent surviving. The ~ percent surviving plot 

was the primary classifying plot. Where the - ]ŷ  percent surviving 

plot did not yield a clear indication of a particular type of curve, the 

other plots (mentioned above) were used as supplementary guides. Service 

life multipliers were developed from which an estimate of the probable 

average service life could be obtained. 

Although some of the test curves could not be classified at all, 

Nichols concluded that the moment ratio method appears to be a valid 

method of life analysis (23, p. 88), 

Krane (l8) developed a procedure for fitting a polynomial to the time 

integral of the retirement ratios and thus obtaining the life table by 

graduating the negative exponential function. 

y(x) =• e 

y(x) .= proportion surviving at age x 
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g(x) = time integral of the retirement ratio function 
I 

= r(t)dt 
>J o 

For large samples it is found that the covariance structure for the 
polynomial regression of y(t) (g(x) in the above notation) on t 
may be obtained from the multinomial distribution when the data 
are grouped. Thus the method of weighted least squares may be 
employed in fitting y(t) (i.e., g(x)). "Censored" data in no 
way vitiate the method (l8, p. l6l). 

Krane applied his procedure to one set of data from Cowles' study 

(4). The results were encouraging. 

Henderson (13) fitted the cumulative distribution form of the WeibuU 

function to the data of Cowles (4). The form of the Weibull cumulative 

distribution function utilized was (13, p. 38) 

P(x) = 100(1 - expL-(L/ex%) n)̂ ^̂ ]) 

exp = e 

L = life of property 

= position of the mode 

B = scale parameter 

The results of the Weibull fits of the data were compared to the 

results of fitting Iowa curves to the data by the matching method. The 

Weibull distribution yielded a better fit for symmetrical type data (13, 

p. 47). The Iowa curves fit data with the mode to the right of the mean 

better than the Weibull distribution (13, p. 47). Fo significant dif­

ference was found (l) in the ability of the two methods to fit data with 

the mode to the left of the mean (13, p. 47) and (2) in the general ability 

of the two methods to describe industrial property mortality experience 

(13, p. 57). 
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A smoothed life table may also be obtained by fitting a mathematical 

function to the survivor ratios. 

= survival ratio for the age interval 

_ + 1 

'T 

The commonly used mathematical function is a polynomial. The amount 

surviving at each age is calculated by the successive multiplications of 

the amount surviving at the beginning of the age interval by the inter­

polated (or extrapolated) survivor ratio for the age interval. 

No one method of obtaining a smoothed, complete life table seems to 

yield the best results in all situations. Both the matching method (using 

Iowa type curves) and the retirement ratio method (using polynomials) 

are frequently used and yield satisfactory results in many situations. 
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IMESTIGATION 

The vertical distribution of retirement ratios at an age interval 

was investigated empirically by simulation. An estimate of the form of 

the vertical distribution was obtained by comparing the plot of the 

cumulative distribution of the simulated retirement ratios with a plot 

of the cumulative distribution of a standard distribution function. Iowa 

type curves were used to provide the underlying, horizontal retirement 

dispersion patterns. 

All calculations were performed on an IBM System/360 Model 50 

digital computer at the Computation Center of Iowa State University of 

Science and Technology, Ames, Iowa. 

Simulation of Retirement Ratios 

A particular Iowa type curve and average service life specifies a 

probability distribution, and hence, a cumulative distribution, of ages 

of units at retirement. The points on the cumulative distribution were 

converted into integers representing a cumulative distribution of 

frequencies by multiplying each point by a common, appropriate multiple 

of ten. Then the values of the cumulative frequencies were divided into 

blocks of numbers representing age intervals. 

The age interval during which a unit of a vintage group is retired 

was simulated by drawing a random number from a uniform distribution and 

finding that block of values (of the cumulative distribution of 

frequencies) which contained the random number. Additional random numbers 

from a uniform distribution were drawn and processed in a similar fashion 

to simulate the retirement of all units in the vintage group. Since the 
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t h 
retirement ratio for the k age interval is 

t h. 
 ̂ _ nuinber of units retired during the k age interval 
k number of units surviving at the beginning of the 

k̂  ̂age interval 

the retirement ratio for each age interval could be calculated. In this 

manner, a set of retirement ratios, one for each age interval, for a 

vintage group was simulated. 

Additional simulation runs using the same size vintage group 

(generally the retirement experience of a vintage group was simulated 100 

times) and based on the same Iowa type curve and average service life, 

yield additional sets of retirement ratios, each set containing one 

retirement ratio for each age interval. The retirement ratios at each 

age interval, one from each set, represent a sample (of size equal to the 

number of simulation runs) from the population of retirement ratios for 

that age interval from a vintage group of the given size. 

The property group size was specified in terms of physical units 

rather than dollars. The reason for using physical units is that the 

age at retirement of any one physical unit is independent of the age at 

retirement of any other physical unit. Dollars (of property) do not have 

this independence unless each dollar represents exactly one physical unit. 

The retirement ratios at each age interval were arranged in ascending 

order. A cumulative count of the ordered retirement ratios at an. age 

interval yielded the cumulative distribution of retirement ratios at that 

age interval. The cumulative counts at each age interval were converted 

to cumulative percents to facilitate comparison of the simulated cumulative 

distributions with the cumulative distribution of a standard distribution 



www.manaraa.com

6l 

function, A flow chart of the computer program developed to simulate the 

Vertical distributions of retirement ratios is shown in Appendix A. 

Simulation runs based on different parent populations (i.e., Iowa 

type curve, average service life, and property group size) yielded addi­

tional sets of vertical distributions of retirement ratios. 

Normal Approximation 

The simulated, vertical distributions of retirement ratios were 

plotted on both rectangular co-ordinate graph paper and normal probability 

paper. The cumulative distribution points for each age interval plotted 

on normal probability paper lie closely about a straight line, except the 

points for the early and late age intervals. Hence, the normal distribu­

tion appeared to be a likely candidate for representing the vertical 

distribution of retirement ratios at an age interval. 

For a specified Iowa type curve, average service life and property 

if the unit of the î  ̂simulation run is retired, 

during the k̂  ̂age interval 

otherwise 

if the unit of the î  ̂simulation run is retired 

after the k age interval 

otherwise 

if the unit of the î  ̂simulation run is retired 

before the k age interval 

otherwise 

i = simulation run index number 

= 1, 2, ' ' I 

group size, let 

îjk ° ̂ 

= 0 

"ijk - 1 

= 0 

"ijk = ̂  

= 0 
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j = property unit index number 

= 1, 2, ' ' J 

k = age interval index number 

= 1, 2, ° ' E 

îk ~ retirement ratio for the k̂  ̂age interval of the î  ̂

simulation run 

? \jk 
r., •ik J J 

\.lc + "l-k 

""i'k ~ ĵ ^̂ ijk 

= 1) = Ĉ ; j = 1, 2, ' ' J; i = 1, 2, ' ' I 

= 1) = Ĉ ; j = 1, 2, • • J; i = 1, 2, . . I 

^̂ îjk = j = 1, 2, ' • -, J; i = 1, 2, ° • «,1 

the 9,nd are each hinomially distributed and collectively 

they form a multinomial distribution; Ĉ , and are the corresponding 

probabilities of the multinomial distribution. 

The cumulative distribution of r̂ ,̂ for some specified k, can be 

obtained by calculating the probabilities 
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as the dummy variable T is varied from zero to one, the range of a retire­

ment ratio. A more useful form of the above expression is 

 ̂%-ic " '' "i-k) 
I'k i*k 

= Br[(l - T)L..ĵ  - T 0] 

The mean of the expression 

[(1 - T)L..̂  - T M..̂ ] 

is the expected value of the expression. Therefore 

E[(L - T)L.̂  ̂- T = E[(L - T)L.,̂ ] - E[T M..̂ ] 

= (1 - T)E(L..%) - T E(M. 

since (l, p. 32): 

1. The expected value of a sum (or difference) of two variates 
or functions is the sum (or difference) of the expected 
values of the separate parts. 

2, The expected value of a constant times a variable is the 
constant times the expected value of the variable. 

Both and are, individually, binomially distributed. The mean of 

a variable which is binomially distributed is usually expressed as (l, 

p. 35) 

li = np 

where 

n = number of independent trials and is analogous to J 

p = probability of success on any one trial and is analogous to 

0̂  aid Cĵ  

Therefore 
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E(Lj.̂ ) = J 0̂  

E(M. .̂ ) = J 

where, as mentioned above 

<=k = 

Then 

E[(l - T)L..ĵ  - T M.,̂ ] = (1 - T) J - T J 

The variance of the expression 

[(1 - T)L,.̂  - I M. 

is the expected value of the square of a similar expression but where 

the mean of each variable is subtracted from the variable. 

var[(l - - T 

n 2 -
E{[(1 - T)(L..ĵ  - - T(M.,%, -

where 

Hj, = E(L..Ĵ ) 

Then 

var[(l - - T 

= E[(l - rf - ix̂ f + 

- 2(T)(1 - T)(L..]̂  - - ̂ 1̂] 

= (1 - Tf E[(L.,̂  - n̂ f-] + T̂ E[(M. 

The variance of a binomial is (l, p. 35) 

= E(y - p) 2 M.2 

= npq 
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where 

ii,p = as previously defined 

q. = 1 - p 

The covariance of two of the variates of a multinomial is (l, p. 50, $4) 

1̂1 ~ ̂ (̂̂ 1 ~ " ̂ 01)] 

= - ''I'loPol 

where 

p̂ Q = probability of the event ŷ  occurring and is analogous to 

Pqi = probability of the event ŷ  occurring and is analogous to 

Therefore 

= J Cjl - Ĉ ) 

= J Ckd - 0̂ ) 

- 4k)(Wi.k - = - J =% Ck 

Then 

var[(l - T)L..̂  - T 

= (X - i f  J ĉ (i -  ĉ ) +  f  CjJd -  cp 

+ 2T(1 - T) J 

Since the multinomial distribution is well approximated by the normal 

distribution, at least for non-extreme parametric values, the linear 

combination of multinomial counts, (l - T) - T will also be' 

approximated by the normal distribution; it is to be expected that this 

linear combination will be more nearly normal than the ratio 

L- i/(L. , - M. , ). The distribution of the ratio is therefore approxi-
i-k' i°k I'k 

mated using the approximate normality of the linear combination: 



www.manaraa.com

66 

= 2r[(l - T)Li.k - T 0] 

= Er[W(|j,, CT) ^ 0] 

= Er[N[(l - T) J - I J Ĉ , [(1 - ïf J Cĵ Cl " Ĉ ) 

+ J Ĉ (l - Ĉ ) + 2T(1 - T) J - 0] 

A digital computer program for computing the points of the normal 

cumulative distribution, based on an approximation hy Hastings (l2, 

p. 168)5 was obtained from the Iowa State University Statistical 

Laboratory - Numerical Analysis and Programming Section, Ames, Iowa. 

Utilizing this program and the theoretical values of and (based on 

the Iowa type curve and average service life) and the vintage group size, 

a pseudo-normal, cumulative distribution of retirement ratios at each age 

interval was calculated (see Appendix B). 
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RESULTS OF THE INVESTIGATION 

The first program to calculate the points of the pseudo-normal, 

cumulative distributions utilized theoretical and values which 

were dependent upon the chosen vintage group size. Plots of the pseudo-

normal, cumulative distributions on rectangular co-ordinate graph paper 

did not satisfactorily match with plots of the simulated cumulative 

distributions; the general shapes of the pseudo-normal, cumulative dis­

tribution plots were appropriate but the (horizontal) locations were not. 

The and C/ values were calculated in the following manner in the 

first program. The "theoretical" number of units surviving at each age 

from a vintage group of the chosen size (for the chosen Iowa type curve 

and average service life) were calculated from a tablê  of the theoretical 

percent surviving; all values were rounded to the nearest whole unit. Then 

_ number of units retired during age interval k 
vintage group size 

Ck = zrfWijk = 

_ number of units retired after age interval k 
vintage group size 

Thus, these estimates of the theoretical and were dependent upon 

vintage group size, curve type and average service life rather than just 

the curve type and average service life. 

Scigliano, J. Michael, Graduate Assistant in the Department of 
Industrial Engineering, Iowa State University of Science and Technology, 
Ames, Iowa. Tables of the theoretical percent surviving, to six decimal 
places, at IPjo intervals of an average service life of 100 years for the 
Iowa type curves based on the original data of Eobley Winfrey. Private 
communication. 1965. 
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A minor modification of the first program, calculating and on 

the basis of a "parent population" of 100,000,000 units rather than the 

chosen vintage group size, yielded more successful results. Although the 

theoretical "parent population" is not limited to 100,000,000 units, the 

amount of error introduced in estimating and by the use of such a 

large number of units is less than when a small vintage group size is 

used (and is probably negligible). 

Retirement ratios of the forma (l) zero divided by zero and (s) zero 

divided by a positive number, occurred in the simulations of the retirement 

ratios and were assigned a value of zero. The first form arose whenever 

the age interval d.uring which the oldest unit of a particular sample (a 

particular simulation run of the retirement experience of the vintage 

group) was retired was, say, k and the age interval during which the oldest 

unit of some other sample was retired was, say, k + 1. The retirement 

ratio from the first-mentioned sample for the (k + l)̂  ̂age interval would, 

then, have to be of the form zero divided by zero. The second form 

occurred whenever one or more units were surviving at the beginning of an 

age interval and no units were retired d'oring that age interval. 

Retirement ratios of the form zero divided by zero could not occur in 

the pseudo-normal program because the computer was programmed to stop 

whenever the number of units surviving at the beginning of an age interval 

was zero. A retirement ratio of the form zero divided by a positive number 

could possibly occur in the pseudo-normal program only in the early age 

intervals when the theoretical values of C, and C/ were 
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Ck = 1 

The pseudo-normal program assigned a value of one to all of the cumulative 

probabilities for that age interval. 

ct)^0] = 1 O^T^l 

The pseudo-normal program computed the values of the cumulative 

distribution for values of T between zero and one in increments of 0.01. 

A large sample size coupled with a small value, a large value, and 

a delta T of 0.01 resulted in very few cumulative distribution values other 

than zero or one, if any. A larger number of non-zero, non-one cumulative 

distribution values could have been obtained by incrementing T by 0.001 

or an even smaller amount. 

The vertical distributions of retirement ratios at each age interval 

were simulated (and the corresponding pseudo-normal, cumulative distribu­

tions calculated) for only a small number of the possible combinations 

of curve type, average service life, and sample size. Representative 

plots, on noriml probability paper, of the simulated cumulative distribu­

tions of retirement ratios and of the pseudo-normal, cumulative distribu­

tions of retirement ratios are shown in Figures 9a, 9b, 10a, and 10b for 

an Iowa - 10 and in Figures 11a, lib, 12a, and 12b for an Iowa - 25. 

For both the - 10 and R̂  - 25 simulations, the sample size (vintage 

group size) was 100 and the retirement experience of a sample was simulated 

100 times. 

A few general comments can be made from a visual inspection of the 

probability plots (including those not shown herein): 



www.manaraa.com

Figure 9a. Simulated cumulative distributions of retirement ratios for 

O - age interval 1.5 - 2.5 years 

• - age interval 4.5 - 5«5 years 

A - age interval 7.5 - 8.5 years 

O - age interval 10.5 - 11.5 years 
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Figure 9'h, Simulated cumulative distributions of retirement ratios for 

O- age interval 13.5 - 14.5 years 

• - age interval 16.5 - 1T<>5 years 



www.manaraa.com

0 
4J 
qS 
ftî 

a 

1 
.a 
-P Q> 
Ph 

0.8 

0.7 

0o6 

0.5 

0.4 

0.3 

0.2 

0.1 

in 

Nil 

T J± 
:i±l 

I£il 

0.2 

J- H 

Î 

© 

09 

~ 

J 

© 
r© 

RT 

ii i 

Ô--
D cr: 

if 

m-

© 

1 

EES 

r; 

:1: 
IT; 

il 

-i-

Î 

-© 

biJ ; 

1-

Hi 

=iS 

;. © 

!T::: 

4 KB 
•Q • 
± 

±_ 

# 
rn 
i± 

! d:; 
.[fl 

t 

-s-
iLil 

a 
©!% 

ilUil-i 
m 

u.:.; 

:B:J 

é 

10 20 30 50 70 80 

Cumulative Probability, Percent 

ir!:F 

•0 
— qpZCZC;; 

P 

:EH± 

±Lh: 

90 

— 

:ix 

1-̂  

95 98 99 
•Tri: 

• -Î 

4 -

.:± 

99 



www.manaraa.com

Figure lOa, Pseudo-normal cumulative distributions of T for - 10 

O - age interval 1.5 - 2.5 years 

• - age interval 4.5 - 5-5 years 

A- age interval 7.5 - 8.5 years 

O- age interval 10.5 - 11.5 years 
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Figure 10b. Pseudo-nornial cumulative distribution of T for - 10 

O - age interval 13»5 - 14.5 years 

• - age interval l6.5 - 17.5 years 
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Figure lia. Simulated cumulative distributions of retirement ratios for - 25 

O - age interval 4.5 - 5-5 years 

n - age interval 12.5 - 13.5 years 

A" age interval I8.5 - 19.5 years 

O- age interval 2^.5 - 25.5 years 
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Figure lib. Simulated cumulative distributions of retirement ratios for - 25 

O - age interval 30,5 - 31.5 years 

• - age interval 36.5 - 37-5 years 

O- age interval 44.5 - 45.5 years 
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Figure 12a. Pseudo-normal cumulative distributions of T for - 25 

O - age interval 4.5 - 5«5 years 

• - age interval 12.5 - 13.5 years 

age interval l8.5 - 19-5 years 

O- age interval 24.5 - 25.5 years 
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Figure 121). Pseudo-normal cumulative distributions of T for - 25 

O - age interval 30.5 - 31o5 years 

• - age interval 36.5 - 37«5 years 

O- age interval UU.5 - 45.5 years 
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1. The slope of a straight line drawn through the points for an age 

interval reflects the standard deviation of the sample and 

increases as the age interval index number increases (for a given 

Iowa type curve, average service life, and sample size). 

2. The slope of a straight line drawn, through the points for a given 

age interval decreases as the sample size increases (for a given 

Iowa type curve, and average service life). 

The three most important results of the investigation were : 

1. The variance of the vertical distribution of retirement ratios 

does not remain constant from age interval to age interval. 

2. The points of the simulated cumulative distribution of retirement 

ratios at each age interval, plotted on normal probability paper, 

lie along or nearly along a straight line, except for the early 

and late age intervals. 

3. Plots of the pseudo-normal, cumulative distributions of retirement 

ratios at each age interval match satisfactorily, visually, with 

the plots of the simulated cumulative distributions of retirement 

ratios at each age interval, except for late age intervals. 

The first result indicates that the assumption of homoscedasticity 

(constant variance), a necessary condition if the unweighted least-squares 

method is to yield linear unbiased estimators which have minimum variance 

amongst the class of linear unbiased estimators of the polynomial coeffi­

cients, is invalid. The second result indicates that the vertical 

distribution of retirement ratios at an age interval is approximately a 

normal distribution. The third result permits the computation of an esti­

mate of the variance of a retirement ratio, by means of the pseudo-normal 
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approximation, when only the vintage group size and estimates of C, and 

are knovm. 
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A EROCEDlffiS FOR FITTING A POLÏIOMIAL TO RETIREMENT RATIOS 

A procedure for fitting a polynoitâal to the retirement ratios 

calculated from original data is developed in this section. The procedure 

is "based on the least-squares principle. 

Assumptions 

A number of the assumptions necessary to make an actuarial life 

analysis have already been presented in previous sections of this 

dissertation. The procedure herein developed for fitting a polynomial to 

the retirement ratios is dependent on the above mentioned assumptions plus 

a few additional assumptions, all of which are listed below: 

1. Basic assumptions of life analysis: 

a. The mortality behavior of the property follows some "law of 

mortality" expressible as a function of time. 

b. The past mortality behavior of a property is indicative of 

the expected future mortality behavior of the property. 

2. Assumptions concerning the property data used: 

• c. The data available is from the historical records of the same 

property or a similar property. 

b. A life analysis based on physical units is meaningful. 

c. Sufficient data in a usable form are available to make an 

actuarial life analysis study. 

d. The data set selected for analysis is composed of homogeneous 

units (both within and between vintage groups) which follow 

the same "law of mortality". 
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Assumptions in identifying the law of mortality: 

a. The "law of mortality" is "better represented by a smooth 

curve fitted to raw data points than "by unsmoothed, raw 

data points. 

"b. The "law of mortality" can be adequately represented by a 

polynomial expressing the relationship between retirement 

ratios and age intervals. 

AssuiTiptions of the method of fitting a polynomial to the retire­

ment ratios : 

a. The age interval of retirement of those units already 

retired is determined without error. 

b. The regression of retirement ratios on age intervals is 

linear in the polynomial coefficients. 

c. The retirement ratios calculated from the data of a given 

vintage group are independent of each other (i.e., the 

assumption from (l6, p. 383): "The deviations y. - E(y|x.) 
J J 

are mutually independent"). 

d. The vintage groups contributing mortality experience to the 

data set are independent, random samples (but not neces­

sarily of the same size) from the same parent population of 

physical units. 

e. Each retirement ratio is a random sample from an approximately 

normally distributed parent population of retirement ratios 

with parameters (l) curve type, (2) average service life, 

( 3 )  sample size, and (4) age interval, and the distribution 
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of the parent population can be approximated by a pseudo-

normal, cumulative distribution (the assumption that the 

distribution is normal is not needed to develop the procedure 

but is needed in testing the significance of the degree 

term of the retirement ratio polynomial). 

f. The expected value of a vertical distribution of retirement 

ratios is a constant for a given curve type, average service life, 

and age interval, regardless of sample size» 

Development of Procedure 

Under the assumptions of the method of fitting a polynomial to the 

retirement ratios (above), the principle of least-squares yields certain 

estimators of the polynomial coefficients. The properties of these 

estimators are dependent upon the assumptions that can reasonably be made 

about the r., and the variances of the r., . Let 
ik ik 

"bhi 
= population retirement ratio for the k age interval 

îk ~ sample retirement ratio for the k̂  ̂age interval from the 

. th . , 
1 vintage group 

2 °"ik ~ variance of the population of retirement ratios for the 

"ull 
k age interval for samples of the size of vintage group i 

o 2 
°'ik ~ sample estimate of 

r̂  ̂= a weighted average (over all i) of the r̂  ̂

Because of computational considerations, the r̂ ^̂  for each age interval must 

be combined into a single r̂ ,̂. Since 

2(̂ 1%) = i = 1, ' ' I 

varCr̂ ^̂ ) -
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r , , the single-valued, least-squares estimator, is (11, p. 12) 

 ̂"ik -ik 
r 
•k I 

I 

 ̂(q" Ajk̂ îk 

Y  2 / 2  I: a /?!% 

% (l/flkifik 

E 1/0"̂ % 

where 

a = a constant of proportionality which may "be used to adjust the 

magnitude of the relative weights 

2 9 
Substituting the sample estimate of yields 

1 (l/4)rî  

2 1/4 

Then, the least-squares expression to minimize is (ll, p. 88) 

mn l/â  ̂ '̂ •k'̂ -̂k " (& + %%% * ̂*k * ' ' 
a,h,c,etc. 

where 

.̂k " l/var(r.k) 

= Z l/ê  
ik 

Differentiation of the least-squares expression yields the normal 

equations, of the form 
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K 2 
2 - (a + + • • "] = 0 

K 
Z - (a + "bx̂  + cx̂  + ' * °]x = 0 

- (a + t%k + caf + . . .]xg . 0 

etc. 

2 o 2 
Replacing o-ĵ  ̂"by the sample estimate of the first normal 

equation "becomes 

K I _ P 
Z S Vo-j_k̂ .k " (a. + + cx̂  + ' • ')] = 0 

or I p 

EI _ ::VeTk''ik 2 
SS1/4C-J— (a + + 03% + . . .)] . 0 

z i/e; ik 

or 

 ̂"".k ""'k " ̂ ̂  "".k +  ̂"'.k "Sc  ̂"".k 4 ' 
and similarly for the other normal equations. 

The maximum-likelihood estimators of the polynomial coefficients, 

under the additional assumption 

r. 
ik " îk̂  

yields the same set of equations as the principle of least squares (see 

Appendix C). 

A theoretical procedure for fitting a polynomial to the retirement 

ratios is : 

1. Compute each r̂ ,̂ 

9 
2. Compute o-̂ .̂  for each r̂ .̂ 

3. Fit a polynomial to the r̂  ̂"by the weighted least-squares method, 

where the weight to he given to each r̂  ̂is ŵ  ̂= 
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o 
The variance, obtained, by the pseudo-normal, cumulative distribution 

is a function of both the vintage group size at age zero, Ĵ , and the 

sample retirement ratio, r̂ ,̂ as an estimate of the mean population 

retirement ratio, If a better estimate of could be found, a better 

2 estimate of could be calculated. 

Assumptions 3a, 3b, and 4f indicate a way of obtaining a better esti-

mate of to use in computing Firstly, since each for a given 

k, is assumed to be an estimate of (j,̂ , some average or weighted average 

value of the say r̂ ,̂ should be a better estimate of Secondly, 

since the "law of mortality" is assumed to be representable by a smooth 

curve, and in particular a polynomial function, the r̂  ̂interpolated from 

a polynomial•function fitted to average or weighted average values of the 

r., should be better estimates of the u,, than the r., . 
ik '̂ k ik 

Several methods of obtaining the r̂  ̂are available; which method is 

the '̂ Dest" has not been established. The chosen method utilizes a pre­

liminary approach to the over-all problem of fitting a polynomial to the 

retirement ratios (see Appendix D) and is as follows: 

L , 
/-w • "IC 

1. Compute r 

2. Compute w,. = ̂  5̂  
r.k(l - r.k) 

3 .  Fit a polynomial to the r,̂  by the weighted least-squai-e method, 

where the weight to be given each r_̂  is ŵ .̂ 

4. Interpolate the necessary values of r̂  ̂from the polynomial of 

(3).  
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The Procedure 

The over-all procedure developed for fitting a polynomial to the 

retirement ratios is, then,: 

a, 
lo Compute r", = z —• for all k. 

f\.k + "..k 

2o Compute w , = . s—\ for all k. 

3o Fit a polynomial to the r' ̂  "by the weighted least-squares method, 

where the weight to give each is w , . 

4. Interpolate the from the polynomial ( 3 ) .  

Q 
5. Compute for each r̂ ĵ  from the pseudo-normal, cumulative 

distribution based on J. and C, and C/ (from r . 
1 k k  ̂ "k 

6. Fit a polynomial to the r̂ ĵ  by the weighted least-squares method, 

where the weight to give each is l/o\̂ . 

A procedure equivalent to step (6) is to fit a polynomial to the 

weighted average retirement ratio, r̂ ,̂, at each age interval by the 

weighted least-squares method, where 

'̂ k I 2 
Z(l/B2k) 

o 
"̂ ik ~ sample estimate of the variance of r̂ ĵ  computed from the 

pseudo-normal, cumulative distribution 

and the weight to be given each r̂  ̂is 

= «1/4  ̂
A general flow chart of a computer program to implement the procedure 

is shown in Appendix E. 
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Cornents 

r2. 
An estimate of the variance of each r̂ ,̂ '̂ ik' calculated in 

the following aianner: 

1. Generate the pseudo-normal, cumulative distribution of r̂ ^̂  

"based on Ĵ (the size of vintage group i) and and computed 

from y , . 
•K 

2 ,  Compute the area above the cumulative distribution versus T 

curve (area above the curve and below a horizontal line 

representing a cumulative probability of one). 

2 
3o Compute the area above the cumulative distribution versus T 

curve» 

4. The difference between the area computed in (3) and the 

square of the area computed in (2) is an estimate of 3̂ .̂ 

The proof of (4 ) is as follows. 

var(t) = E(T -

= E(T̂  - 2^T + 

= E(T̂ ) = 2jjE(T) + 

= E(T̂ ) -

= E(T̂ ) - [E(T)]̂  

where T is a dummy variable representing the values which an r̂  ̂can take 

on. The area above the cumulative distribution versus T curve, computed 

on the basis of horizontal strips, is the integral of the height of the 

strip, which is T, times the width of the strip, which is dP(T). But 

df(T) = f(T)dT 

and therefore, 

Areâ  = ['̂  T f(T)dT 
J- o 
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The expected, value of T is, by definition, 

E(T) = T f(T)dr 
o 

2 
The area above the cumulative distribution versus T curve is, similarly, 

Areâ  = T̂  f(T)dT 

and, by definition, 

E(T̂ ) = f(T)dT 

Therefore 

Area c - (Areâ )̂  = E(T̂ ) - [E(t)]̂  

= var(T) 

As mentioned previously, the plots of the pseudo-normal, cumulative 

distributions matched satisfactorily, visually, the plots of the simulated 

cumulative distributions, except for the late age intervals. It should 

be noted, perhaps, that the Poisson cumulative distributions were 

generated for the late age intervals and that they matched satisfactorily, 

visually, the corresponding simulated cumulative distributions. This 

result was not utilized in the development of the polynomial fitting 

procedure. 

A computer program for fitting a polynomial to a set of observed 

values by the weighted or unweighted least-squares method was obtained 

from the Iowa State University Statistical Laboratory - Numerical Analysis 

and Programming Section, Ames, Iowa. The program uses orthogonal 

polynomials to obtain the polynomial coefficients of the least-squares 

fit. The program requires (l) that the values of the independent 

variable be equally spaced and (2) that only a single value of the depend­

ent variable be paired with a single value of the independent variable. 
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The first requirement prohibits the use of the retirement ratio(s) for 

the age interval 0 to 0.5 years. If there are multiple values of the 

dependent variable for each value of the independent variable, the second 

requirement forces the programmer to combine such multiple values into a 

single value before using the orthogonal polynomial program. 

The method of orthogonal polynomials facilitates testing the signifi­

cance of each additional degree. The program obtained from the Statistical 

Laboratory computed, and printed out, the regression sum of squares, the 

remainder sum of squares, the regression mean square, the remainder mean 

square, the total sum of squares, and the degrees of freedom associated 

with each. Thus, an F test of the form 

F 

= remainder sum of squares of the (n - l) degree 

polynomial 

"fcîl 
Rg = remainder sum of squares of the n degree polynomial 

= degrees of freedom of (R̂  - Rg) 

= 1 

Vg = degrees of freedom of Rg 

= (number of observed values) - n - 1 

a = probability of a type I error 

t/tl 
can readily be performed to test the significance of adding the n degree 

term. 

An analyst may wish to test the normality of the retirement ratios 

(at an age interval) obtained from historical property data. A method of 
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testing the hypothesis 

[Ŷ ] - N(̂ , a) i = 1, 2, . . I 

{Ŷ } = The ordered set of observed values of a sample (such as 

the retirement ratios at a particular age interval) 

was developed and is presented in Appendix F. A severely limiting condi­

tion on the application of the method to retirement ratios is that the 

sample of retirement ratios to be tested must have come from vintage 

groups of the same size. 

If some r̂ ĵ  is of the form zero divided by zero, the computer program 

to implement the procedure does not attempt to compute the corresponding 

p 
îk (step 5 of the procedure); the part of the program which calculates 

p 
skips that age interval (and all subsequent age intervals of the same 

vintage group) and proceeds to start calculating the for the next 

vintage group. In essence, this process assigns a value of zero to both 

r̂ ĵ  and ŵ ĵ  when r̂ ^̂  is of the form zero divided by zero. 

An interpolated r ̂  (step 4 of the procedure) may be equal to zero 

(i.e., a retirement ratio of the form zero divided by a positive constant). 

The variance of the r̂ ,̂ is theoretically zero when r ̂  is zero and 

the weights ŵ ,̂ ŵ ,̂ « « approach infinity. A digital computer 

cannot calculate the value of l/O; hence, the com.puter was programmed to 

print out a code indicating that an of the form zero divided by a 

constant had been encountered and then to proceed to computations involving 

 ̂k + 1* Some arbitrary value must be assigned to each of the ŵ ^̂  

(i = 1, • • •, l). A possible alternative would be to assign a value (to 

such w\̂ ,) which is equal to the largest value of any other ŵ ^̂ , or perhaps 

a value up to twice as large as the largest value of any other ŵ ĵ . The 
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reason, for recommending this alternative is to prevent one (or a limited 

number of) r̂ ^̂  value from dominating or inordinately influencing the 

calculation of the polynomial coefficients in step (6). No study has been 

made of what might be the relative magnitude of an appropriate value to 

assign to such w., . 
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Discussion 

Two slightly different procedures for fitting polynomials to retire­

ment ratios are currently in use. A third procedure is presented as a 

preliminary approach in Appendix D and is utilized in the procedure 

developed in this dissertation. When there is more than one retirement 

ratio for an age interval, because of the method used to obtain the 

original life table, all four of these procedures combine the several 

retirement ratios for an age interval into soma single, composite retire­

ment ratio. Three of the procedures then fit a polynomial to the retire­

ment ratios by minimizing the sum of the "weighted" squares of the devia­

tions of the composite retirement ratios from the regression curvej the 

other procedure gives each squared deviation equal weight. 

To facilitate referring to the various procedures, the following 

designations will be adopted: 

lo Procedure A, a currently used method, is 

p P 
Min [Z[r_̂  - (a + bx̂  + cx̂  + . . .)] ] 

a,b,c,etc. 

where 

ijlx 
y ̂  = a composite retirement ratio for the k age interval 

= ̂  îk 

r̂ ĵ  = retirement ratio for the k age interval from the i 

vintage group 

- ̂  
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= nuiaber of -onits from the vintage group retired during 

til 
the k age interval 

"til 
Ŝ j, = number of units from the i vintage group surviving at 

til 
the "beginning of the k age interval 

*ik = 

= the conditional variance of r̂  ̂(conditional upon the 

denomiantor of r̂ ,̂ 

% 

til 
= population retirement ratio for the k age interval 

%k = 1 - Pk 

Therefore 

» _5!iAŷ  
•̂k ~ I 

 ̂®ik ''ik 

% Slk 

since E, and Q, are constants for a given k and i = 1, 2, • • *, 
iC K 

Also 

a,t,c,etc. = polynomial coefficients 

til = k age interval index number 

Procedure B, a currently used method, is 

Min {2 S . [r - (a + hx, + cxT + • ' ')f'] 
a,t,c,etc. K 

where 
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s.k - % Sik 

a, "b, c, and are an shown in (l), above. 

Procedure C, the preliminary approach suggested in Appendix D, is 

K _ ^ p P 

Min {S w [r . - (a .+ bx. + cx + « • •)] } 
a,,b,c,etc. % & & & 

where 

» =.k 

= 1/Sfj, 

% 

and perhaps, is best described as a weighted sum. of conditional 

variances. and Q. must be replaced by their sample estimates, 

and (l - r__̂ ), respectively, since they are not known. Hence 

«2 • " ̂ .k) 
a. 
k s.k 

-̂k' ̂ 'k' x, are as shown in (l) and (2), above, 

•procedure D, the procedure developed in the preceding section, is 

K 
l.in [E - (a + bx̂  + cx̂  + . . .)] 1 

a,b,c,etc. 

where 

".k="/8ik 

Q 
cTik = estimate of the variance of r̂  ̂obtained by means of the 
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psuedo-normal, cumulative distribution computer program 

and "based on (l) and values calculated from the 

preliminary fit of a polynomial to the retirement ratios 

and (2) 

- ̂  îk 
" I 

a, TDJ C, and are as shown in (L), above. 

Three basic assumptions of all four procedures are : 

1. The r̂ ĵ  are independent random samples, 

2. The age intervals during which the units are retired are deter­

mined without error, and 

3. The S(r̂ ĵ ) is constant for a given k and i = 1, 2, • • I. 

From a practical point of view: 

lo The first assumption appears to be valid for a given k and 

i = 1, 2, " • •5 I but not valid for a given i and 

k = 1, 2, » • •, K. 

2. Tlie second assumption is probably valid. 

3. The third assumption appears to be invalid, in general. 

The four procedures will be discussed in this section in terms of 

the properties (unbiasedness and minimum variance) of; 

1. The estimators of the composite retirement ratios, and 

2. The estimators of the polynomial coefficients. 

An additional topic which will be briefly discussed in this section is the 

effect of using dollars rather than physical units (as the measure of the 
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amount of property) on calculating estimates of the variances. 

The criteria for evaluating each procedure, in a qualitative sense, 

are : 

1. Does the procedure utilize unbiased estimators and, if so, in 

what sense are these estimators unbiased? 

2o Do these estimators have any good variance properties? 

3. Do the estimators coincide with the estimators obtained by the 

principle of least-squares? 

Estimators of the Composite Retirement Ratios 

Procedures A, B, and C combine the r̂ ^̂  for an age interval into a 

single composite retirement ratio, ̂,•̂ 9 in the same manner. 

~ I 

I 

_ % Sik ̂ ik 
I 
E S 

ik 

Since : 

1. Each r̂ ĵ  is assumed to be an unbiased estimator of and 

2. The conditional variance of each r̂ ^̂  can be assumed to be 

knovm because 8̂  ̂is known and and Q. cancel out, 

the ̂  ̂ could be said to be linear unbiased estimators of P̂  having the 

minimum variance of all linear unbiased estimators. Graybill provides 

the necessary theorem (9, p. U09): 
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Theorem l8.ll. Let 0 be an unbiased estimator of 0, and let the 
A 2 A 

variance of 8. be denoted by a-, • Let 0^ be another unbiased 
A 2 

estimator of 0, and let the variance of 0^ be denoted by Cg. Let 

0^ and 0g be uncorrelated. Then the best (minimum-variance) 

linear unbiased estimator of 0 is 

2  A  , 2 A  
» "2 «1 + =^1 «2 
S g , 2 

Repeated application of Theorem l8.ll yields 

A i^i/pZ) a 
0 = 

Z l/jf 

Hence, on the assumption that the conditional variances are the correct 

variances, the ?, are best linear unbiased estimators of the P, . When 
' "k ic 

is large and r^^. small, the conditional variances will very closely 

approximate the correct variances. The least-squares estimator of is 

(11, p. 12) 
I 

A _ ^ ̂ik ̂ ik 
0 _ _ 

where 

_  2 /  2  
^ik ^ 

2 a = a constant of proportionality which may be used to alter 

the magnitudes of the w 
ik 

^ 2 
Hence, substituting for 

, fix 

T 2y%2 Z ? /a.% 
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^ -lit 

2 

and, therefore, is of the same form as the least-squares estimator of 

E, with the conditional variances used as the variances of the r., . 
xC 

Procedure D utilizes a preliminary polynomial fit of the retirement 

ratios (by procedure C) to obtain "better" estimates of the and used 

^ p 
to calculate If, because of these refined estimates of and one 

p 
is willing to assume that the are the actual variances of the then 

the r__^ are best linear unbiased estimators of the (9s p. ̂ 09). Wlaen 

p 
the a^j. are considered as sample estimates of the variances of the r^^,, 

very little can be said about the unbiasedness and variance properties of 

the r , as estimators of the P, . The r , are of the same form as the "k k «k 

least-squares estimators of the P^ regardless of whether the are con­

sidered as the actual variances or as sample estimates of the variances 

of the r^^. The maximum-likelihood estimators of the P^^, assuming the r^^ 

are distributed W(|j^, are identical to the least-squares, estimators. 

If the additional assumption is made that the r^^ are distributed E(|j,^, 

then each r_^ is distributed N(iin^j a.^,) (ll, pp. 29-30) where 

2 _ 1 
cr 

2 1/4 

Estimators of the Polynomial Coefficients 

The polynomial fitting portion of procedure A assigns equal weight 

to the According to Guest (ll, pp. 88-89), the estimators of the 
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polynomial coefficients obtained "by solving the set of equations 

K 
 ̂ - (a + + cxĵ  + • • ')] = 0 

where 

[X. ] = set of known constants 

will be unbiased. Therefore procedure A does yield unbiased estimators 

2 
of the polynomial coefficients. When the variances, are not equal 

to a constant, then the weights should be 

Hence, the estimators of the polynomial coefficient do not have good 

variance properties., The estimators of the polynomial coefficients are 

not the same as the least-squares estimators since procedure A sets 

equal to a constant and the principle of least-squares sets equal to 

1/4-

Procedure B weights each ^ by the corresponding The inverse 

of 8.̂ ,, l/ŝ ,̂ might be considered as an estimate of the variance of r̂ ,̂ 

but it is not the best available estimate; l/s,^ is not even a correct 

estimate of the conditional variance. The appropriate estimator of the 

variance consistent with the variance is 

A2 = var(? ̂ js.^) 

% 

Procedure B utilizes unbiased estimators of the polynomial coefficients if 

the are assumed to be known constants in accordance with the conditional 

variance assumption. These estimators should have somewhat better variance 

properties than the estimators utilized in procedure A because l/s_^ is a 
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better approximation of var(r^^|8^^J than the constant used in procedure A. 

The estimators of the polynomial coefficients are not the same as the 

least-squares estimators to the extent that l/s,^ is not the same as 

varCP,%|3.%). 

The weights used in procedure C to obtain the estimators of the 

polynomial coefficients are at least in agreement with the conditional 

variance assumption. 

G'.k = l/var(r,%j8.k) 

S.k 

% 
1 G'k 
" F.k(l -

^ , is the inverse of the sample estimate of the variance of y^ because 
•k «k 

and Q,^ are not knor^n and must be replaced by their sample estimates 

^ ̂ and (l - . The estimators of the polynomial coefficients are not 

necessarily unbiased since the ; where 

are not known constants. These estimators should have, perhaps, somewhat 

better variance properties than the estimators of either procedure A or B. 

These estimators (procedure C) are of the same form as the least-squares 

estimators since 

{Xjj] = 

• k'̂  

Procedure D yields best linear unbiased estimators of the polynomial 

o 
coefficients if the are assumed to be the actual variances of the r^^,. 
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var(r , ) = var[— 1 
'k I .2 

Z i/Si ik 

(ï-̂ )̂ [T=.i-(rii/4, + + • • • + r̂ /â )] 

1:1/4 

(j-̂ )̂ C(J-)̂  varCrĵ )̂ + varCr̂ j.) + 

''ik S l/Ŝ . îk 2̂k 

+ var(rjĵ )] 

^IK 

4 + (3-)' 4 + 

S l/oT̂  îk 2̂k 

+ (i-)' 4] 

^IK 

(r^)' z v4 

Z l/of ik 

1 
I p 
z i/ef ik 

= lA.j, 

Under the (additional) assumption of normality, the estimators are 

unbiased and have minimum variance amongst unbiased estimators (9> P- 117; 

11, pp.'88-89). If the assumption 

4 = 
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is not made then the estimators of the polynomial coefficients are not 

necessarily unbiased and do not have optimum variance properties. The 

form of these estimators is the same as the form of the least-squares 

estimatorso 

In summary: 

1. Procedures A, B, and C utilize best linear unbiased estimators 

of the composite retirement ratios if the conditional variances 

are assumed to be the actual variances of the r..» 
ik ik 

2. Procedure D utilizes best linear unbiased estimators of the 

r-2. 
composite retirement ratios if the are assumed to be the 

actual variances of the r.. . 
ik 

3* Procedure A utilizes unbiased estimators of the polynomial 

coefficients; these estimators are not of the same form as the 

appropriate least-squares estimators and probably have relatively 

poor variance properties. 

4. Procedure B utlizes unbiased estimators of the polynomial 

coefficients if the conditional variance assumption is made ; 

these estimators are not of the same form as the least-squares 

estimators, but should have somewhat better variance properties 

than the procedure A estimators. 

5. The estimators of the polynomial coefficients utilized in 

procedure C are not necessarily unbiased but should have somewhat 

better variance properties than the procedure A and procedure B 

estimators; these estimators are of the same form as the least-

squares estimators. 
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6. Procedure D utlizes best linear unbiased estimators of the 

polynomial coefficients if the are assumed to be the actual 

variances of the r., ; these estimators are of the same form as 
ik 

the least-squares estimators. 

7. If the r^j^ are assumed to be distributed and if 8%^ 

2 
is assumed to be the actual variance, then the estimators of 

the polynomial coefficients utilized in procedure D are unbiased 

and have minimum variance amongst all unbiased estimators. 

Procedure C utilizes weights of based on the variances in 

fitting polynomials to the 9^.; as previously mentioned. These variances 

are conditional upon the denominators, of the retirement ratios and, 

when all are known, are variances of constants. Theoretically 

the variance of a constant is zero. The extent to which this theoretical 

consideration limits the usefulness of procedure C is not known. 

The difference between the results that might be obtained from the 

practical application of procedures C and D is not known. Either C or D 

should yield better results than either A or B. 

Effect of Dollars on Computing Variances 

The primary effect of using dollars rather than physical units on 

variances, assuming that each physical unit costs more than one dollar, 

is to decrease the magnitude of the variances. The problem wlaich this 

effect engenders is the calculation of extremely small variances. This 

problem does not seem to arise in procedures A, B, and C since: 

1. The variances are never directly computed, and 
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2o The variances S.^ and are calculated directly from the raw 

data. 

~2 
The variance estimate used in Appendix D, is based upon the 

calculation of Area^ (the area above the pseudo-normal, cumulative distri­

bution versus T curve) and Area g (the area above the pseudo-normal, 
T 
2 

cumulative distribution versus T curve). These areas, in turn, are based 

upon the cumulative distribution generated by the pseudo-normal computer 

program which utilizes the parameters : vintage group size, and C^. As 

the vintage group size increases, the variance decreases, and therefore 

the amount by which T is incremented must also decrease or the variance 

will appear to be zero. For instance, a weight (of the form S^^) of 

1,000,000 corresponds to a variance of 0.000,001. Hence, to obtain a 

of the same magnitude, T should be incremented by amounts of approximately 

o 
0.000,000,1 in order to obtain any accuracy in the estimate of The 

problem then becomes one of computer time and the quick determination of 

the proper amount by which to increment T and of the first non-zero value 

of 

Pr[N[(l - T)J - T J Ĉ , {(1 - T)2j C%(l - Ĉ ) 

+ + 2T(1 - T)J & 0] 

This problem does not appear to be insolvable. 
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EXAMPLE 

The procedure developed in Section VI was applied to a four vintage 

group example. The amount of property in each vintage group was measured 

in physical units and was determined by drawing a random uniform number 

between 150 and 500; the sizes of the vintage groups were 462, I76, 3^8, 

and 226 units. The retirement experience of each vintage group was simu­

lated on the basis of a type Iowa curve and an average service life of 

25 years (a flow chart of the simulation computer program is presented in 

Appendix A). 

A plot of the four retirement ratios at each age interval (three at 

the last age interval) is shown in Figures 13a and 13b. A. larger ordinate 

scale is used in Figure 13a thazi in Figure 13b to avoid crowding the 

points close together. Age interval one is the age interval 0 to O.5 

years, age interval two is the age interval 0.5 to I.5 years, etc. 

One of the retirement ratio methods of analyzing historical 

data is to fit polynomials of up to the fourth degree to retirement ratios 

of the form 

by the unweighted least-squares method. The polynomial selected as best 

representing the original data is generally the first, second, or third 

degree polynomial. Plots of the second and third degree polynomials and 

of the ninth degree polynomial (which is the highest degree polynomial 

significant at the O.O5 level by the F test) are sho\«i in Figures l4 and 

15, respectively. 
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Figure 13a. Vintage group retirement ratios at each age interval for the example 

O - vintage group I (462 units) 

• - vintage group II (176 units) 

A- vintage group III (348 units) 

O- vintage group IV (226 units) 
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î;Fi 

ciH 

a;o:z 

4-m:! 

iTÎ! 

ÏH:!::: 

1:.:; 

....}. 

() = :fr :k::#Tr 

: : : D  

:::A: 

i 
-rQ—r 

0%^ 

0 k 8 12 16 20 2k 28 

Age Interval Index Nujnber 



www.manaraa.com

Figure 13b « Vintage group retirement ratios at each age interval for the example 

O - vintage group I (462 units) 

n - vintage group II (176 units) 

A - vintage group III (348 units) 

O- vintage group IV (226 units) 
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Figure lU. Second and third degree polynomial fits of the r 

O - second degree polynomial 

• - third degree polynomial 
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Figure 15» Ninth degree polynomial fit of the r^^ 
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The orthogonal polynomial program, obtained from the Statistical 

Laboratory, was used to fit the polynomials to the retirement ratios. This 

program requires equal spacing of the abscissa values, hence, the retire­

ment ratio for the age interval 0 to 0.5 years was not used as an input 

value. All other age intervals were assigned an index number one less 

than was previously assigned to them, so that age interval one represented 

the age interval 0.5 to 1.5 years, etc. After this reassignment of index 

numbers, each index number (k) was, numerically, midway between the 

boundary years of age of the age interval it represented (i,e., a k value 

of one represented age interval 0.5 to 1.5 years, etc.). The value of the 

retirement ratio for the age interval 0 to 0.5 years was extrapolated from 

the polynomial as one-half of the retirement ratio for a k value of 0.25, 

a k value which is, numerically, midway between 0 years and 0.5 years. 

The age intervals were then reassigned their previous index numbers 

for plotting purposes, so tliat in the figures, an index number of one 

represents the age interval 0 to 0.5 years, an index number of two repre­

sents the age interval 0.5 to 1.5 years, etc. 

The second degree polynomial does not fit the very satisfactorily. 

The retirement ratio values interpolated from the polynomial are too large 

during the early age intervals and are zero from age interval eleven to 

age interval twenty-one (these "zero" valued retirement ratios were 

actually negative but were set equal to zero since, for practical purposes, 

the amount of property cannot increase as the age interval index number 

increases). The retirement ratios appear to be too small during the late 

age intervals; however, the calculated percent surviving at age 50.5 

years (the age at the end of the maximum age interval of the theoretical 
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- 25 curve) was only 0.019^. The survivor curve calculated from the 

second degree polynomial (not shown) drops sharply from 100^ at age 0 to 

66.2^ at age 9.5 years, is a horizontal line from age 9«5 years to age 20.5 

years, and then drops sharply again. 

The third degree polynomial fits the somewhat "better than the 

second degree polynomal. However, the interpolated retirement ratios are 

zero for the first few age intervals (they were actually negative hut set 

equal to zero) and are a little too high for the age intervals 32 to 4?. 

The calculated percent surviving at age 50*5 years was 0.006^. The 

corresponding, smoothed survivor curve is a horizontal line (at 100^) from 

age 0 to age 3.5 years and- then drops fairly sharply from age 3*5 years to 

approximately age 16.5 years, drops relatively less sharply from age l6.5 

years to age 28.5 years, drops fairly sharply from age 25.5 years to age 

41.5 years, and drops less sharply to approximately zero percent surviving 

at age 49.5 years. 

The ninth degree polynomial fits the !r_^ satisfactorily. The 

corresponding smooth survivor curve (not shown) is somewhat irregular 

from age 0 years to age 6.5 years hut essentially follows an type 

curve, with an average service life of approximately 24.5 years, "beyond 

age 6.5 years. The calculated percent surviving at age 48.5 was Q.00%.  

The procedure developed in this dissertation was applied to the data 

of the example. Polynomials of the first tlxrough tenth degrees were fitted 

to the hy the weighted least squares method, where 
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and the weight given each F ̂ is 

i\.k + "..k 
"•k = - ̂ .k) 

The highest degree polynomial which was significant at the O.O5 level "by 

the F test was the third degree polynomial. The r^^ were interpolated 

from the above-mentioned third degree polynomial fit of the and used 

? 
to calculate the Then polynomials of degree one through ten were 

fitted to the r^^^ "by the weighted least-squares method, where the weight 

assigned to each r^^ was The fourth degree polynomial was the 

highest degree polynomial which was significant at the O.O5 level "by the 

F test. 

A plot of the retirement ratios interpolated from the fourth degree 

polynomial fit of the r^^^ is shown in Figure I6. The retirement ratio at 

age interval 59 (57-5 to $8.5 years) is one. The corresponding smoothed 

survivor curve is shown in Figure 17 and a plot of the - 25 survivor 

curve is shown in Figure I8. The smoothed survivor curve, plotted 

according to the commonly used ordinate and abscissa scales, forms a very 

smooth curve and almost exactly matches an - 24.5. The percent 

surviving at age 50.5 years was 0.048%. 
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Figure l6. Smoothed retirement ratio curve from the fourth degree polynomial fit of the r. 
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Figure 17. Smoothed survivor curve from the fourth degree, polynomial fit of the r_.^ 



www.manaraa.com

Percent Surviving 



www.manaraa.com

Figure l8. - 25 survivor curve 
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CONCLUSIONS 

The investigation of the vertical distribution of retirement ratios 

at each age interval, by simulation, indicated the following: 

1. The points of the cumulative distribution of retirement ratios 

for an age interval plotted on normal probability paper lie 

nearly along a straight line, except for the early and late age 

intervals. 

2o The variance of the distribution of retirement ratios generally 

increases as the age interval index number increases (for a given 

Iowa type curve, average service life, and sample size). 

3. The variance of the distribution of retirement ratios for a 

given age interval decreases as the vintage group size increases 

(for a given Iowa type curve and average service life). 

Hence, each retirement ratio from a vintage group is a sample from an 

approximately normal distribution and the assumption of the homo-

scedasticity of variances is invalid. 

Further investigation yielded a pseudo-normal computer program which 

generated cumulative distributions that closely matched, visually, the 

simulated cumulative distributions of retirement ratios for all age 

intervals, except the late age intervals. The variance of the cumulative 

distribution generated by the pseudo-normal computer program can be 

calculated and only the vintage group size, an estimate of the probability 

of a unit being retired during the given age interval, and an estimate of 

the probability of a unit being retired after the given age interval need 

to be known. 
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A procedure was developed- for fitting polynomials to retirement 

ratios. The "basic assumptions of the procedure are: 

1. The r.j,^ are independent random samples, 

2. The age intervals during which the units are retired are 

determined without error, and 

3. The E(r^^J is a constant for a given k. 

Under these assumptions, the procedure utilizes estimators of the poly­

nomial coefficients which are not necessarily unbiased but which probably 

have relatively good variance properties. If the estimates of the 

variances of the retirement ratios are assumed to be the actual variances, 

an assumption which may be reasonable because of the manner in which the 

variances are calculated, the estimators of the polynomial procedure are 

best (minimum variance) linear unbiased estimators. If, in addition, the 

r^^ are assumed to be distributed the estimators are unbiased 

and have minimum variance amongst all unbiased estimatorsj the normality 

assumption is supported by the approximate linearity of the plots of the 

simulated cumulative distributions on normal probability paper. 

The procedure developed herein was not applied to the data of actual 

industrial property. Future research needs to be done to determine whether 

this procedure is significantly better than previously developed procedures 

and the procedure set forth in Appendix D. Additional research might also 

be directed towards developing a procedure for fitting polynomials to 

retirement ratios which considers the effect of the non-independence of 

the retirement ratios calculated from the same vintage group. 
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APPENDIX A - GENERAL FLOW CHART OF SIMULATION PROGRAM 

Simulation of the retirement experience of a given vintage group 

can be used to calculate one retirement ratio for each age interval. 

Repeated simulation of the retirement experience of the same vintage 

group yields addition retirement ratios for each age interval. These 

retirement ratios for an age interval constitute an empirical, vertical 

distribution of retirement ratios for that age interval. A general flow 

chart of the conrputer program to accomplish this simulation of the vertical 

distribution of retirement ratios at each age interval is presented in this 

appendix. 

An Iowa type curve was used to provide the parent population of ages 

of units at retirement for the purpose of simulating the retirement 

experience of a vintage group. 

The abbreviations used in the flow chart are: 

Arr. — arrange 

Betw. between 

Gale. = calculate 

Corresp. = corresponding 

Cum. = cumulative 

Distr, = distribution 

Exp. experience 

No. = number 

Ret. = retirement 

R.U.ÏÏ, = random number from a uniform distribution 

Sim. = simulated 
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Theor. = theoretical 
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APPEHDIX B - GENERAL FLOW CHART OF NORMAL APPROXIMATION PROGRAM 

Tile computer program, the general flow chart .of which is presented 

in this section, generates an approximation of.the vertical, cumulative 

distribution of retirement ratios at each age interval. A vital section 

of the program is the subroutine, obtained from the Iowa State University 

Statistical Laboratory - Numerical Analysis and Programming Section, for 

computing an approximation of the normal cumulative distribution. This 

subroutine is based on the work of Hastings (l2, p. l68). 

The abbreviations and symbols used in the flow chart are; 

Approx. = approximate 

Gale. = calculate 

Cum. = cumulative 

Distr. = distribution 

Incr. = increments 

leg. = negative 

No. = number 

m. = Pr[(l - T)L,%, - T ^ 0] 

Ret. = retirement 

Subr. = subroutine 

Surv. = surviving 

Theor. = theoretical 

tlfl 
L., = 1 if the j unit of the sample is retired during the 

th. 
k age interval 
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= 0 otherwise 

J 

til 
= 1 if the j ' unit of the sample is retired after the 

age interval 

= 0 otherwise 

= mean 

2 
= variance 

T = dummy variable 
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APPENDIX C - MAXIMUM-LIKELIHOOD ESTIMATORS 

OF THE POLYNOMIAL COEFFICIENTS 

Tile procedure for determining a maximum-likelihood estimator is 

(l, p. 101): 

1. Determine the distribution function of the sample, 
Xg,  .  .  x^;  8 ) .  

2o Determine L = log f(X^, Xg, • • *5 8). 

3. Determine the value of 0 which will maximize L by solving the 
equation: ÔL/Ô0 = 0. This will also maximize the likelihood. 

Let 

Then 

til 
= population retirement ratio for the k age interval 

til 
r^^ = retirement ratio for the k age interval obtained from 

the î  ̂ vintage group (assumed to be NID(IJ Ĵ 

2 
°"ik ~ variance of the population of retirement ratios for the 

til k age interval from samples of the size of vintage 

group i 

{% = maximum-likelihood estimator of ^ 

2 = variance of 

_ (^ik " hç) 

if the rare assumed to be normally distributed, 
ik 

i -i^ ~ a.j^) i= l ,  2, • • • / l  

k = 1, 2, ' ' K 
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The distribution function of the sample retirement ratios at age 

interval k is 

' ^Ik' ^k^ 

/ 1 \I/ 1 \ i=l ^ik = 

where 

L is the natural log of the distribution function. 

L = H,,) 

= I to(q=) + ln(n - 1/2 —f 
Mar cTik ^ik 

I I I I 
where rr and 2 denote rr and S , respectively. L is maximized by setting 

i=l i=l 
the partial derivative of L with respect to equal to zero and solving 

for 
^k" 

= - 1/2(2) z(———)(- —) = 0 

= 0 

^ik 

E{^) = S(^) 

^ik °'ik 

Since is a constant over all I, by assumption, then 
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2 1/cL 

I p 
sdAik) 

Thus, the ma^ximim-likelihood, estimator of the retirement ratio for age 

interval k is the weighted average retirement ratio. Itie weight to be 

given each retirement ratio, r^^,, is the inverse of the variance of the 

2 
retirement ratio, 

Let 

^ik 

I 

".k = ^ "ik 

= sdAik) 
The estimator of the variance of is 

•K 

^.k ^'k ^°k 

\k \k "".k 

For a given sample retirement ratio, r^^,, from an distribution, 

2 
the variance of the sample, is a constant and, therefore, w^j^ and w ^ 
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are constants. Also, the variance of a constant times a variable is the 

square of the constant times the variance of the variable. Therefore 

2 2 2 
2 f \ , ^2k , \ , , ^Ik f s = — var(rjj^) + — var (r^j^) + • • - + — var (r^) 

".k ".k "-k 

But 

var(rik) = ^ik 

_ 1 

^ik 

Therefore 2 2 2 

•k "k "k 

= + 
2 2 2 

- S — 

^k 
2 

l/w. 
k 

1 

^^ik 

s(i/4) 
Thus, the maximura-likelihood estimators of the |j^, and the variances 

2 
of the are 
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P' k I „ 

CT 
.k I p 

zd/of.) 'ik' 

The regression equation of retirement ratios on age intervals is, for 

the first degree case 

+ «k 

r , = a + "bx, + e. 
• k X k 

where 

r^= "observed" weighted average retirement ratio for age 

interval k (i.e., the sample calculation of jj^) 

Q'jS = regression coefficients 

. = error term 

a,/b,e^ = estimators of a, G^, respectively 

X. = age interval index number 

Since is distributed (ll, pp. 29-30) and, therefore. 

e, ~ ECD(0, 0- ) 

the maximum-likelihood estimators of a and g, a and b, respectively, can 

ined. The distribution i 

=2' • • •' ®K' \> 

be determined. The distribution function of the e^/s is 

_ 1/2 

Since the mean of actuals zero 
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f ( e i5  •  •  Gg . ;  Gg)  

- 1/2 

- (xS' (" °s%)" 

The regression equation, in terms of is 

Gk = ^k - * - 9%k 

Therefore 

' ' , r.g, x^, ' ' Xg; P) 

- 1 /2  

The L is 

L = ln[f(r,^, . . ., r,g, x^, . . ., x^; o;, ;)] 

The maximuun-likelihood estimator of oi is given by 

=k 

K K K _ 
Z = Z a/(7 + Z ;xVo-'' 

"k ^k ^ 

K p E p K p 
Z nVo- = a Z l/c + p Z %./a 

The maximum-likelihood estimator of 3 is given by 
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§..v22i( '^y 

K K K g 

^ ^ V""e^ + ^ ^ V^e. <•'*'> 
k k ic 

Since a and b are constants and x is assumed to be measured without error, 

2 2 
the variance of r„, , a , , is the variance of e, , cr . Replacing |j. , a, 3, ii • IC jx 

and CTg by r,^,, a, b, and o\^,, respectively, equations 3 and k become 

^ ^ ^ ^/"^k + ^ ^ V'-k (5) 

K ^ K ^ K 2 2 
^ " • • k / = ' - k  =  "  ̂  V ' - k  +  ̂  ̂  V ' - k  ( ° )  

or 
K K K 

s  w.k  r -k  =  a  Z » .k  +  t  Z « -k  ^k  

K K E 

: ^-k "-k = ^ '.k * ^ ^ '.k 

which are the same as the first two normal equations obtained by the 

principle of least-squares. 

The maximum-likelihood estimators for the coefficients of higher 

degree polynomials can be solved for in a similar manner. 

If the variances are known, the maximum-likelihood estimators of the 

polynomial coefficients are unbiased and have minimum variance amongst 

all unbiased estimators (9, pp. 113-114, 117). 
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APEEKDIX D - PRELIMINARY APPROACH 

1 
Dr. Fuller suggested a preliminary approach (to the problem of 

fitting a polynomial to the retirement ratios) based on sampling theory. 

The link "between retirement ratios and sampling theory is the analogy 

between the several retirement ratios at an age interval (one from each 

vintage group) and cluster sampling from proportions (25? pp. 236-237). 

Let 

"fcll 
P^ = population retirement ratio for the k age interval 

^ik ~ sample estimate of from the i^^ vintage group (or i^^ cluster) 

i = vintage group (or cluster) index nuinber 

= 1, 2, ' ° I 

j = unit nutaber within a vintage group (or cluster) 

= 1, 2, ' ' J 

k = age interval index number 

= 1 ,  2 ,  «  *  » ,  K 

L^j^ = 1 if the item of the i^^ vintage group (or i^^ cluster) is 

ijli 
retired during the k age interval 

= 0 otherwise 

M. = 1 if the item of the i^^ vintage group (i^^ cluster) is 

th 
surviving at the beginning of the k age interval 

= 0 otherwise 

•^ik ^ ^ ^ijk 

= '"i'k 

duller, Wayne A., Professor of Statistics Department, Iowa State 
University of Science and Technology, Ames, Iowa, Information on sampling 
theory. Private communication. I967. 
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= nijuiiber of units from the i'^^ vintage group surviving at the 

"til 
"beginning of the k " age interval (or size of the i cluster 

• 
at the k age interval). 

y, = composite estimate of P 
"k k 

Then j 

•ik J 

^ik 

A single estimate, of the population retirement ratio for age 

interval k can be obtained by weighting each r^^^ by the inverse of its 

variance. The variance of r^^, conditional upon the denominator of 

IS 

var(r , ) = var(— ) 

1 ^ 
= var(Z L. 

• ik 

^ "^ik 
ik 

since is binomially distributed. Therefore 

/ , W 

ana 
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Jik 

% 

Then I 

« _ ^ "ik 'ik 
^.k I 

^\k  

% 

' :Jik 

% 

= ^ "^ik ^ik 

"ik 

since and Q. are cexistants over all I for a given k. 

The weight to give each when fitting a polynomial to the r"^^ is 

not clear. A suggested weight for each r", is 

where 

1. w_^ is the inverse of the variance of r'^^, 

2. The variance in (l) is conditional upon the denominators, 8^^,, and 

3. y. is the composite sample estimate of 

The expression to minimize in fitting a polynomial to the retirement ratios 

hy a weighted least squares' approach is, then, 

I 
K E J 

Mln + . . .)]^} 
a,b,c,etc. "k^ -k 

where 
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= sample estimate of 

The variances of the "r^^^ used in fitting a polynomial to the retire-

^ 2 
ment ratios, present a theoretical problem. Since 

lo Each variance is conditional upon the denominator, 

2o The numerators and denominators are related in the following 

manner 

^ 
"1 M , 

"1 

% «2 
"'2 = %::; 

M. .2  =  M. .1  -  L . .1  

- M_2 

RJ L _ o o -< T = 
"3  M. .3  

M . . 3 = M . . 2  - L . . 2  

I \ . 2  =  M,,2 -  M,,2 

= 

K 

M'-K "K- l  "  ^°°K-1  

IJX 
ZSZLijk = L... 

IJ 
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= M ^ 
•  • !  

then the variances, when all are known and considered, are variances 

of constants and are zero. The extent to which this theoretical considera­

tion limits the usefulness of the-practical application of the procedure 

is not knwn. 

The least squares expression of this preliminary approach 

Min A r l l X k  -  ( a  +  +  c x ^  f  .  .  . ) f ]  
a,b,c,etc. * % K 

is quite similar to the least squares expression of a present method of 

obtaining a smoothed life table (see p, $4 of this dissertation) 

^ _ P ? 
Min S{S , [Î', - (a + bx + C3C + • • • )] } 

a,b,c,etc. * 

where the in both expressions is 
I 
E retirements during the k age interval from vintage 

? group 1 

k I th 
S survivors at the beginning of the k age interval from 

vintage group i 

and 

^-k = J.k 

1 th 
= S survivors at tte beginning of the k age interval from. 

vintage group i 

The import of this similarity between the least squares expressions would 

seem to be that the present method of fitting a polynomial to the weighted 

average retirement ratio 
I 

!=« ^ ^ik 
r 

•k I 

^ ^ik 
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"by a least-squares approach where each r',^ is weighted "by 

"'k = 

may be a reasonable method, but a method in which the weight given each 

'r ^ could, perhaps, be improved upon. 
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APPENDIX E - GENERAL FLOW CHART OF PROGRAM 

TO IMPLEMENT TtJE PROCEDURE 

The computer program, to implement the polynomial fitting procedure 

developed in this dissertation is actually a combination of several 

computer programs. The basic parts of the program are the subroutine to 

fit polynomials to retirement ratios, the subroutine to compute an 

approximation of the normal, cumulative distribution, and the section which 

2 
computes The remaining parts of the program primarily process the 

data to obtain the necessary input to the above-mentioned subroutines and 

provide instructions to the computer as to when to proceed to which 

operations. 

The abbreviations and symbols used in the flow chart are; 

Approx, = approximate 

Gale. = calculate 

Cum. = cumulative 

Deg. degree(s) 

Distr. distribution 

Extrap. = extrapolate 

Inc. = increment(s) 

Interp. = interpolate 

No. = number 

Polyn. polynomial(s) 

Ret. = retirement 

Sign. significance, significant 

Subr. subroutine 
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Surv. = surviving 

Wtg. = -weighting 

L ^ • • Ic 
r 

= 1 if the unit of the i^^ vintage group is 

ijli 
retired during the k age.interval 

= 0 otherwise 

I J 
M , = 2 E M. . 

=lj ^ i=lj=l 

tlT. fh. 
jVL = 1 if the j unit of the i vintage group is 

th 
retired after the k age interval 

= 0 otherwise 

« ^"'k * ^"k w 
"k r . (1 - g', ) 

•k '  

"tl^. 
f , = value of the retirement ratio for the k age interval 

•k 

interpolated from the polynomial fit of the 

T = dummy variable 

A = deltaJ amount of• increment 

= mean 

2 
cr^ = variance 

< P  =  Er[(l -  T ) L . , ^  -  T  L . . ^ ^  0 ]  
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Area^ = area above the cumulative distribution versus 

T curve 

Area o = area above the cumulative distribution versus 

2 
T curve 

r 
.k I 

w 
1 
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APPEHDIX F - TESTING FOR NORMALITY 

The use of certain statistical procedures, such as setting confidence 

limits or making tests of significance, requires an assumption about the 

distribution of the variable. Frequently, the variable is assumed to be 

normally distributed. Therefore, a considerable amount of research has 

been done on the problem of testing the normality of a sample (27, p. 591): 

Testing for distributional assumptions in general and for 
normality in particular has been a major area of continuing 
statistical research—both theoretically and practically. A 
possible cause of such sustained interest is that many 
statistical procedures have been derived based on particular 
distributional assumptions—especially that of normality. 

A number of statistics are available for testing the hypothesis 

Ho: ~ a) i = 1, 2, - - -, I 

where {Y }̂ is a sample of size I. In testing a hypothesis, two types of 

error are possible (24, p. 2 7 ) ;  

Type I error. If we reject our hypothesis when it is actually 
true, we have committed an error of the first kind, or a 
Type I error. 

Type II error. If we accept our hypothesis when it is actually 
false, we have committed an error of the second kind, or a 
Type II error. 

The probability of a Type I error, a, is represented as 

Er(rejecting Ho]Ho true) = a 

The probability of a Type II error, p, is represented as 

Pr(accepting Ho]Ho false) = p 

1 - 3 is called the power of the test and may be represented as 

Er(reject HO|HO false) = 1 - p 
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Obviously, a test of a Ho which minimizes both a and |3 would be 

desirable, hoivever (24, p. 27): 

We shall remark here that, if our size of sample (nuriiber of 
sample observations) has been decided in advance, it is not 
possible to minimize a and p simultaneously. 

A common procedure is to select an a, a sample size, and a test. A 

desirable attribute of such a test is that (for any given sample size 

and cf) 3 is equal to or less than the p of any other test (or the power 

of the test is equal to or greater.than the power of any other test). 

If a test with this attribute is not available, then the test which has 

optimum over-all power, according to some criterion, should be selected. 

The simplicity of the test, from an applications point of view, may be an 

important, additional criterion. 

Shapiro and Wilk (27) developed the ¥ test for testing the hypothesis 

and empirically obtained the power of the W and eight other tests against 

each of fifteen different distributions. Comparing the power of the W 

statistic with the power of any one of the other eight tests shows that 

the power of the W statistic is greater against at least a majority of the 

fifteen distributions. 

The ¥ statistic is (27, p. 602-603) 

Ho: [Y.] ~ E(n, a) i = 1, 2, • • I 

2 
W = 

2 
S' 

where 
k 
E 
i=l 

a = a set of multipliers obtained from a table and 

dependent upon n 
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8̂  = z (y, ̂  y)2 
1 -

= observed values arranged in ascending order 

i = Ij 2, • * • n 

k = ̂  if n is even 

= if n is odd. 

The W test is origin and scale invariant (27, p. 593)* 

One of the criteria occasionally used in selecting a test is the 

simplicity in application of the test. The computation of the W statistic 

requires a set of "a" factors which are different for different sample 

sizes. Thus, a table of "a" factors must be available when the W 

statistic is used. 

The objective of the investigation reported in this appendix was to 

find; by simulation, a test (or tests) for normality simpler than the 

W test yet having power at least comparable to that of the W test against 

other distributions. 

A possible statistic for testing for normality might be the 

coefficient of correlation 

r = ± 1 ; 
- y; 

i = 1, 2, ' ' ' I 

where 

i-x 
squares of the vertical 

deviations from a linear regression line fitted 

by the method of least-squares 
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I - 2 
Z (y. - y) = the sum of the squares of the deviations of 
i=l  ̂

the observed values from the mean of the 

observed values 

The statistic (the coefficient of correlation)—is, undoubtedly, 
the most widely used measure of the strength of the linear 
relationship between two variables. (7} p. 355} 

— 2 
The denominator, E(ŷ  - y) , is a measure of the total variation of the 

y's. The numerator, S(ŷ  - ŷ )̂ , is a measure of the chance variation 

(i.e.; a measure of the variation not explained by a linear relationship 

between x and y). 

If a coefficient of correlation type statistic is to be used to test 

for normality, selection of the variables in order to obtain a linear 

relationship between the ŷ  and the is crucial. The scheme devised to 

obtain a linear relationship between the ŷ  and the x̂  is analogous to 

plotting the ŷ  on normal probability paper. If a random sample is drawn 

from a normal population and the sample values arranged in ascending order 

and plotted on normal probability paper, the sample values will fall 

closely about a straight line. The ordinates of the probability plot are 

the ordered ŷ  (hereafter denoted as Ŷ ) and they are plotted on a linear 

scale. The abscissa values are the percents of the cumulative distribu­

tion and they are plotted according to distances representing the 

standard deviates of the normal distribution. Hence, a set of should 

be linearly related to the ordered set of standard deviates (hereafter 

denoted as X.) if the ŷ  are random samples from a normal population. 

Tvro modifications of the coefficient of correlation were made in 

developing the test statistics. Firstly, only the ratio portion of r was 
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used because the ratio 

 ̂
I _ P 
Z (Ŷ  - Y) 

is the proportion of the total variation due to chance ( 7 ,  p. 3 5 9 )  aad, 

therefore, is a measure of the amount of departure of the {Ŷ } from 

normality. Secondly, some statistics of the same form but with greater 

exponents were investigated because ratios of this form with the 

deviations raised to the third and fourth power are measure of skewness 

and kurtosis, respectively. 

The test statistics investigated were of the form 

[ Z |Y -
i=l 

S = —J—— ; where gh = dc 

[ E |Y. - Y|̂ ]̂  
i=l  ̂

{Ŷ } = sample values drawn from some distribution and arranged in 

ascending order; i = 1, 2, • • », I 

I = sample size 

Y = mean value of Y 

.li 
I 

Y. = a + bX. 
1 1 

{X̂ } = the ordered standard deviates 

where a and b were obtained by fitting a linear equation to the paired 

values [Ŷ , X̂ J. 

The S statistics are scale and origin invariant. The proof is as 

follows : 
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The noriml equations for estimating a and P are 

I 
("E" means E ) 

i=l 

Z Y. = la + b Z 

Z Xĵ Yĵ  = a Z Xj. + b 

and the regression equation is 

= a + bX. 

Solving for a and b yields 

z(xĵ  Z Y. - Z X. ZX.Y. 
a = —i i p 

I Z(Xj, - (z X. 

Z X.Y. - Z X. Z Y./l 
b ^̂  

Z(X.- (Z X.) /I 

Since the are the standard deviates (of the normal distribu 

tion) and are symmetrically located about the origin, 2 X̂  = 0 

Therefore, 

Z(x. Z Y. 
a =—; ^  

I Z(Xĵ ) 

I 

. _ ^ % 

Assume a set of Ŷ  are drama and transformed as follows 

Ŷ  = K(Yĵ  - f) 

Then 
Z Y/ 
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Z K(Yĵ  - f) 

and 

S(Xj)" 

Z - f ) 

z(x.)̂  

5. The form of the statistics is 

(Z|Y' -

(zlŶ ; - Yf )'̂  ; 

(ZlYĵ  - (a' + b'x.)!̂ )̂  

:- / |Cvd 
(ZlŶ ; - Y'l"-) 

[Z|K(Y. - f) -

, Z Y. X. Z X.Y. X. f Z X. _ . 

E Y. 
K'̂ '̂ {Z|Yj, - f - + f|̂ }* 

Collecting terms 

(Z|Y - ̂  
 ̂ Z(Xĵ ) 

 ̂ TTY. ' 

(2|ïi - -Ŷ l ) 

since 2X̂  = 0. 
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6. Let 

Then, the numerator becomes 

Y. ZX.T. . 
(E|Y. - [- + X,̂ ]|S) 

= (Z|Y. - [a +M.]|8)̂  

= (Z|Y. - i 

and. ,  . 

S _ ) 

(Z|Y. -

thus completing the proof. 

The powers of the S test were obtained empirically by simulation. A 

preliminary simulation run was conducted as follows : 

1. A large number of S type statistics were formulated. 

2. Sample size was set equal to twenty and a set equal to 0.05. 

3. One-hundred samples (each of size twenty) were drawn by simulation 

from the noriml distribution and from each of fifteen different 

distributions (including fourteen of those utilized by Shapiro and 

Wi]±; see 27, p. 6o8). 

4. The value of each S statistic and the W statistic (for a = 0.05) 

was determined from the samples from the normal distribution. 

5. The power of the test of each S statistic against samples from 

each non-normal distribution was determined and compared with the 
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power of the test of the ¥ statistic against the same distribu­

tions. 

6 .  On the basis of ( 5 ) ,  above, nine of the most promising 

statistics were selected for further study. 

The statistics selected for further investigation were 

82 = 

812 

S25 = 

826 = 

813 = 

861 = 

828 

S 40 = 

843 

ïiï, -

ïlïi - Y|" 

[Siïi Kff 
E|r. - Y|'* 

[2|ïi 

2|ïi _ Y|& 

[2lïi • 

Sly. - ïl" 

[2|ïl • 

[2|ïi • ï|'»]3/2 

-

O
J

 
1—

1 ro 

E|ï, -  ï r  E|ï, X  

[Slïi -

Slïj - ï l ^  

2|ï. - i l ®  

2|\- T | "  

E | ï ^ -

2|ïi - Y|12 
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The distributions utilized and the number of samples (of three 

different sample sizes) drawn from each of the distributions for the final 

simulation run are shown in Table 5- The distributions utilized by 

Shapiro and Wilk were all of those shown in Table 5 down to, and 

including; the T(lO, 3.1). A comparison of the power of the W test (for 

a = 0.05 and I = 20) against the non-centralized X distribution obtained 

by Shapiro and Wilk, 0.59> with the power of the W test (same a and l) 

obtained in the investigation, 0.15, indicates that the non-centralized 

2 X distributions used were probably not the same distribution. 

Table 5• Sample size and number of samples for the final simulation runs 

Distribution 

10 

Sample size 

20 50 

Formal 2000 2000 2000 

*(1) 
1000 " 

*(2) 
1000 ----

*(4) 
. 1000 - "— 

(10) 500 500 — 

Hon-cent, ---- 500 —-

Log normal 1000 ----

Cauchy 1000 1000 1000 

Uniform 1000 1000 1000 

Logistic 1000 1000 1000 

Beta (2, l) 1000 

LaPlace 1000 — 

Poisson - 1000 — --

Binomial 1000 1000 1000 

T(5, 2.4) — — — — 1000 —  "  — "  



www.manaraa.com

171 

Table 5 (Continued) 

Distribution Sample size 

10 20 30 

T(10j 3«1) ---- 1000 

Half-normal 1000 1000 1000 

Half-Cauchy 1000 

Sum of 3 uniforms —- 1000 

The powers of the tests included in the final simulation run are 

presented in Tables 6 through l4. Tables 15 through 23 show the 

différences between the power of the S tests and the W test. A 

sign indicates that the power of the S test was greater than the power 

of the W test by the indicated amount; a sign indicates the opposite. 

Table 2k shows the sum of differences across all a and I values and the 

largest positive and negative differences. 

Table 6 .  Empirical power of tests for or = 0. 0 3  and I = 10 

Distribution W 82 812 825 826 813 s6i 828 840 S43 

Binomial 0.33 0.28 0.46 0.42 0.42 0.43 0.44 0.42 0.34 0.30 

Uniform 0,05 0.03 0.10 0.12 0.14 0.07 0.11 0.09 0.09 0.10 

Cauchy 0.55 0.56 0.52 0.46 0.42 0.54 0.51 0.52 0.51 0.51 

Half-normal 0.13 0.12 0.15 0.12 0.10 0.13 0.13 0.13 0.11 0.10 

x2 
(10) 

0.08 0.09 0.10 0.07 0.06 0.09 0.08 0.09 0.08 0.08 

Logistic 0.07 0.07 0.05 0.04 0.03 0.06 0.05 0.05 0.05 0.05 
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Table 7- Empirical power of tests for cv = 0.05 and I = 10 

Distribution W 82 812 82$ 826 813 86l 828 840 8̂ 3 

Binomial 0.48 O.39 O.5O O.53 O.52 0.50 O.52 O.51 0.48 0.4? 

Uniform 0.09 0.05 0.l4 O.18 0.19 0.11 0.15 O.13 0.I3 O.I3 

Cauchy O.58 O.59 O.56 O.52 0.49 0.$? 6.55 0.5$ 0.54 0.53 

Half-normal O.I8 O.I5 0.20 O.I8 0.15 O.I9 O.I8 O.I8 O.16 O.I5 

0.13 0.11 0.12 0.10 0.09 0.12 0.12 0.11 0.11 0.11 

Logistic 0.11 0.10 0.08 0.06 0.05 0.09 0.07 0.08 0.09 0.09 

Table 8. Empirical power of tests for a = 0.10 and I = 10 

Distribution. W 82 812 825 826 813 S6l 828 840 843 

Binomial O.55 O.56 0.59 O.6O 0.60 O.58 O.6O O.61 O.56 0.54 

Uniform 0.1? 0.12 0.23 0.28 O.3I 0.20 0.25 0.23 0.21 0.21 

Cauchy 0.62 0.66 O.61 0.59 O.58 0.62 O.6O 0.60 O.6O 0.59 

Half-normal 0.29 0.27 0.29 O.3O 0.29 0.28 0.28 0.26 0.24 0,22 

0.18 0.18 0.17 0.17 0.16 0.17 0.17 0.17 0.16 0.16 

Logistic 0.16 0.16 0.15 0.13 0.12 0.15 0.l4 0.l4 0.l4 0.l4 

Table 9. Empirical power of tests for a = O.O3 and I = 20 

Distribution W 82 812 825 826 813 86I 828 840 843 
_ 

*(1) 

X^gx 0.80 0.76 0.76 0.69 0.61 0.77 0.76 0.77 0.73 0.69 

x9^\ 0.46 0.43 0.42 0.35 0.29 0.43 0.42 0.42 0.37 0.36 

x9^o) 0.21 0.18 0.19 0.15 0.11 0.19 0.18 0.19 0.17 0.16 

Non-

0.97 0.96 0.97 0.96 0.93 0.98 0.97 0.98 0.97 0.95 

2 
cent. X̂ ĝx 0.12 0.12 0.10 O.O8 O.O6 0.11 0.11 0.12 0.11 0.11 

Log normal 0.93 O.91 O.9I O.87 0.82 O.91 O.9O O.90 O.87 0.84 
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Table 9 (Continued) 

Distribution W S2 812 825 326 813 86l 828 840 8̂ 3 

Cauchy O.83 O.85 O.8O O.76 O.72 0.82 O.8I 0.82 0.82 0.82 

Uniform O.I5 O.O7 0.22 0.29 O.3I O.16 0.26 0.21 0.17 0.20 

Logistic 0.08 0.09 0.06 0.05 0.03 0.09 0.08 0.10 0.10 0.10 

Beta (2, 1) 0.24 0.17 0.27 0.28 0.26 0.23 0.28 0.26 0.24 0.24 

LaPlace 0.24 0.27 O.I8 0.11 0.07 0.22 0.19 0.23 0.26 0.25 

Poisson 1.00 0.99 1.00 1.00 O.98 O.99 O.99 O.98 O.85 0.80 

Binomial 0.64 O.61 0.72 0.74 0.70 O.61 0.66 O.6O O.37 O.33 

T(5, 2.4) 0.47 0.36 0.52 0.57 0.55 0.48 0.56 0.54 0.52 0.52 

T(10, 3.1) 0.83 0.76 0.85 0.84 0.79 0.83 0.86 0.86 0.84 0.80 

Half-normal O.36 O.3O O.35 O.32 0.26 0.34 O.35 0.35 0.34 O.32 

Half-Cauchy O.98 O.98 O.98 O.98 0.97 O.98 O.98 O.98 O.97 0.97 

S'om of 
3 uniforms O.O3 0.02 O.O3 0.04 0.04 O.O3 O.O3 0.04 O.O3 O.O3 

Table 10. Empirical power of tests for a = O.O5 and I = 20 

Distribution W 82 812 825 826 813 861 828 840 s43 

2 
*(1) 

0.99 0.98 0.98 0.97 0.96 0.99 0.99 0.99 0.99 0.98 

2 
X ( 2 )  0.84 0.83 0.84 0.78 0.72 0.84 0.83 0.84 0.80 0.76 

^2 
*(4) 0.53 0.53 0.53 0.45 0.40 0.52 0.51 0.52 0.47 0.43 

^2 
(10) 0.28 0.29 0.27 0.20 0.18 0.26 0.24 0.25 0.23 0.21 

Si on- 2 
0.15 0.16 0.15 0.13 0.11 0.l4 0.15 0.15 0.15 0.15 

Log normal 0.94 0.94 0.94 0.91 0.88 0.94 0.93 0.93 0.91 0.89 

Cauchy 0.85 0.87 0.83 0.79 0.77 0.85 0.83 0.85 0.85 0.84 

Uniform 0.22 0.15 0.29 0.36 0.39 0.23 0.32 0.29 0.26 0.27 

Logistic 0.11 o.i4 0.09 0.06 0.05 0.12 0.10 0.13 o.i4 0.13 

Beta (2, 1) 0.31 0.27 0.35 0.35 0.34 0.33 0.36 0.36 0.34 0.33 

LaPlace 0.28 0.35 0.25 0.16 0.13. 0.29 0.24 0.29 0.31 

« 

0.29 
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Table 10 (Continued) 

Distribution W 82 812 825 826 313 s6i 828 s40 843 

Poisson 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.91 0.87 

Binomial 0.73 0.74 0.82 0.85 0.83 0.70 0.74 0.67 0.47 0.40 

T(5, 2.4) ' 0.55 0.48 0.63 0.65 0.64 0.58 0.65 0.65 0.64 0.63 

T(10, 3.1) 0.88 0.84 0.90 0.88 0.87 0.89 0.91 0.92 0.91 0.89 

Half-normal 0.43 0.42 0.44 0.40 0.36 0.44 0.45 0.46 0.43 0.40 

Half-Cauchy 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 

Sum of 
3 uniforms 0,05 0.04 0.06 0.07 0.0? 0.04 0.06 0.05 0.05 0.05 

Table 11. Empirical power of tests for o; = 0,10 and I = 20 

Distribution W 82 812 825 826 813 B6l 828 8̂ 0 843 

*(1) 0.99 0.99 0.99 0.98 O.99 O.99 0.99 O.99 0.99 

*(L) 0.89 0.90 0.88 0.86 0.91 0.90 0.91 0.91 0.89 

0.67 0.65 0.65 0.61 0.56 0.66 0.65 0.64 0.61 0.58 

*(10) 0-35 0.36 0.33 0.31 0.38 0.36 0.36 0.33 0.31 

Non- p 
cent. 0.25 0.25 0.24 0.20 0.20 0.25 0.24 0.24 0.23 0.23 

Log normal 0.97 O.96 O.96 O.95 O.94 0.97 O.96 0.97 O.96 0.95 

Cauchy 0.88 0.90 O.87 0.84 O.83 O.87 0.86 0.86 0.86 0.86 

Uniform 0.37 0.25 0.4l 0.49 0.52 O.36 0.44 0.4l O.38 0.4l 

Logistic 0.18 0.21 0.15 0.11 0.10 O.I9 O.16 O.I9 O.I9 0.19 

Beta (2, 1) 0.48 0.41 0.48 0.50 0.49 0.49 0.50 0.50 0.50 0.49 

LaPlace 0.39 0.45 0.35 0.29 O.25 O.38 O.34 0.37 0.35 0.34 

Poisson 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 O.92 

Binomial 0.94 O.92 0.99 O.99 1.00 0.86 O.89 O.78 O.63 0.57 

T(5, 2.4) 0.73 0.63 0.74 0.76 0.77 0.74 0.78 0,77 0.78 0,78 

T(10, 3.1) 0.95 0.92 0.95 0.95 0.93 0.95 0.96 0.96 0.96 0.95 

Half-normal 0.59 0.54 0.57 O.55 0.53 O.60 0.60 O.61 0.59 0.57 
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Distribution W 82 S12 825 826 SI3 s6i 828 840 343 

Half-Cauchy 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 

Sum of 
3 uniforms 0.12 0.10 0.12 0.12 0.12 0.11 0.12 0.11 0.10 0.10 

Table 12. Empirical power of tests for a = 0.03 and I = 50 

Distribution W 82 812 S25 826 813 861 828 840 843 

Binomial 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.35 0.23 

Uniform 0.8l 0.51 0.77 0.82 0.85 0.70 0.81 0.77 0.78 0.83 

Cauchy 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 

Half-normal 0.92 0.87 0.91 0.88 0.82 0.91 0.92 0.92 0.90 0.84 

Logistic 0.11 0.21 0.14 0.07 0.05 0.20 0.16 0.19 0.20 0.18 

Table 13. Empirical power of test s for a = 0.05 and I = 50 

Distribution W 82 812 825 826 813 861 828 840 843 

Uniform 0.87 0.65 0.81 0.87 0.90 0.79 0.87 0.85 0.84 0.88 

Binomial 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.49 0.38 

Cauchy 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 

Half-normal 0.95 0.92 0.94 0.93 0.90 0.95 0.96 0.96 0.94 0.92 

Logistic o.i4 0.28 0.19 0.12 0.09 0.25 0.22 0.24 0.24 0.22 



www.manaraa.com

176 

Table l4. Eiapirical power of tests for cf = 0.10 and. I = 50 

Distribution W 82 812 S25 826 813 s6i S28 3W 843 

Binomial 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.68 

Uniform 0.95 0.80 0.90 0.93 0.94 0.88 0.93 0.91 0.93 0.95 

Cauchy 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

Half-normal 

C
O

 O
N

 o
 0.96 0.97 0.97 0.96 0.98 0.98 0.98 0.98 0.97 

Logistic 0.22 0.34 0.29 0.23 0.19 0.33 0.30 0.31 0.30 0.29 

Table 15. Differences between empirical powers of W and S tests for 
cy = 0.03 and I = 10 

Distribution 82 812 825 826 813 861 828 840 843 

Binomial 4-0 .05 +0.13 +0.09 +0.09 +0. ,10 +0, .11 +0.09 +0.01 -0.03 

Uniform -0 .02 +0.05 +0.07 +0.09 +0. ,02 +0. ,06 +0.04 +0.04 +0.05 

Cauchy +0 .01 -0.03 -0.09 -0.13 -0. ,01 -0. .04 -0.03 -0.04 -0.04 

Half-normal -0 .01 +0.03 -0.01 -0.Q3 0 0 0 -0.02 -0.03 

*(10) 
Logistic 

+0 .01 +0.02 -0.01 -0.02 +0. 01 0 +0.01 0 0 
*(10) 
Logistic 0 -0.02 -0.03 -o.di -0. 01 -0. 02 -0.02 -0.02 -0.02 

Table l6. Differences between empirical powers of W and S tests for 
a - 0.05 and I = 10 

Distribution 82 812 825 826 8I3 861 828 s4o 843 

Binomial -0.09 +0. ,02 +0.05 +0.04 +0. ,02 +0.04 +0.03 0 -0.01 

Uniform -0.04 +0. .05 +0.09 +0.10 +0. 02 +0.06 +0.04 +0.04 +0.04 

Cauchy +0.01 -0. 02 -O.OS -o.g) -0. 01 -0.03 -0.03 -0.04 -0.05 

Half-normal• -0.03 +0. 02 0 -0.03 +0. 01 0 0 -0.02 -0.03 

*(10) 
Logistic 

-0.02 -0. 01 -0.03 -0.04 -0. 01 -0.01 -0.02 -0.02 -0.02 *(10) 
Logistic -0.01 -0. 03 -0.(5 -0.06 -0. 02 -0.04 -0.03 -0.02 -0.02 
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Table 17. Differences between empirical powers of W and S tests for 
a = 0.10 and I = 10 

Distribution S2 812 825 826 813 861 828 840 843 

Binomial +0.01 +0.04 +0.05 +0.03 +0.05 +0. ,06 +0. 01 -0.01 

Uniform -0.0$ +0.06 +0.11 +0.14 +0.03 +€.08 +0. ,06 +0. 04 +0.04 

Cauchy +0.04 -0.01 -0.03 -0.04 0 -0.02 -0. 02 -0. 02 -0.03 

HaIf-normal -0.02 0 +0.01 0 -0.01 -0.01 -0. 03 -0. 05 -0.07 

*(10) 0 -0.01 -0.01 -0.02 -0.01 -0.01 -0. 01 -0. 02 -0.02 

Logistic 0 -0.01 -0.03 -0.04 -0.01 -0.02 -0. 02 -0. 02 -0.02 

Table l8. Differences between empirical powers of ¥ and S tests for 
a = 0.03 and I = 20 

Distribution 82 812 825 826 813 861 828 840 343 

.2 
-0.01 0 -0.01 -0.04 +0 .01 0 +0.01 0 -Ô.02 

(2) -0.04 -o.o4 -0.11 -0.19 -0 .03 -0.04 -0.03 -0.07 -0.11 

*2 
ft) -0.03 - 0. o4 -0.11 -0.17 -0 .03 -o.o4 -0.04 -0.09 -0.10 

*(10) -0.03 -0.02 -0.06 -0.10 -0, .02 -0.03 -0.02 -o.o4 -0.05 

Nan- 2 
cent. 0 -0.02 -0.04 -0.06 -0. .01 -0.01 0 -0.01 -0.01 

Log-normal -0.02 -0.02 -0.06 -0.11 -0, .02 -0.03 -0.03 -0.06 -0.09 

Cauchy +0.02 -0.03 -0.07 -0.11 -0, .01 -0.02 -0.01 -0.01 -0.01 

Uniform -0.08 +0.07 +0.14 +0.16 +0. .01 +0.11 +0.06 +0.02 +0.05 

Logistic +0.01 -0.02 -0.03 -0.05 +0. ,01 0 +0.02 +0.02 +0.02 

Beta (2; l) -0.07 +0.03 +0.04 +0.02 -0. ,01 +0.04 +0.02 0 0 

LaPlac e +0.03 -0.06 -0.13 -0.17 -0. ,02 -0.05 -0.01 +0.02 +0.01 

Poisson -0.01 0 0 -0.02 -Ofl ,01 -0.01 -0.02 -0.15 -0.20 

Binomial -0.03 +0.08 +0.10 +0.06 -0. 03 +0.02 -0.04 -0.27 -0.31 

T(5, 2.4) -0.11 +0.05 +0.10 +0.08 +0. ,01 +0.09 +0.07 +0.05 +0.05 

T(10, 3.1) -0.07 +0.02 40.01 - 0. o4 0 +0.03 +0.03 +0.01 -0.03 

Half-normal -0.06 -0.01 -o.o4 -0.10 -0. 02 -0.01 -0.01 -0.02 -0.04 
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Table l8 (Continued.) 

Distribution S2 812 825 826 813 s6i 828 340 

C
O

 

Plalf-Cauchy 0 0 0 -0.01 0 0 0 -0.01 -0.01 

Sum of 
3 uniforms -0.01 0 +0.01 +0.01 0 0 +0.01 0 0 

Table 19» Differences between empirical powers of W and S tests for 
a = 0.05 and I = 20 

Distribution 82 812 825 326 813 s6i 328 340 343 

*(1) 
-0.01 -0.01 -0.02 -0.03 0 0 0 0 -0.01 

ro
 -0.01 0 -0.06 -0.12 0 -0.01 0 -0.04 -0.08 

*(4) 
0 0. -0.08 -0.13 -0.01 -0.02 -0.01 -o.o6 -0.10 

2 
*(10) 

+0.01 -0.01 -0.07 -0.10 -0.02 -0.04 -0.03 -0.05 -0.07 

Won- 2 
cent. 

Log normal 

+0.01 Ô 

0 

-0.02 

-0.03 

-0.04 

-0.06 

-0.01 

0 

0 

-0.01 

0 

-0.01 

0 

-0.03 

0 

-0.05 

Cauchy 40.02 -0.02 -0.06 -0.08 0 -0.02 0 0 -0.01 

Uniform -0.07 +0.07 +0.14 +0.17 +0.01 +0.10 +0.07 +0.04 +0.05 

Logistic +0.03 -0.02 -0.Ô5 -0.06 +0.01 -0.01 +0.02 +0.03 +0.02 

Beta (2, l) -0. o4 +0.04 +0.04 +0.03 +0.02 +0.05 40.05 +0.03 +0.02 

LaPlace +0.07 -0.03 -0.12 -0.15 +0.01 -0.04 +0.01 +0.03 +0.01 

Poisson 0 0 0 0 0 0 -0.01 -0.09 -0.13 

Binomial +0.01 +0.09 +0.12 +0.10 -0.03 +0.01 -o.o6 -0.26 -0.33 

T(5, 2.4) ' -0.07 +0.08 +0.10 +0.09 +0.03 +0.10 +0.10 +0.09 +0.08 

T(10, 3.1) -0.04 +0.02 0 -0.01 +0.01 +0.03 +0.04 +0.03 +0.01 

Half-normal -0.01 +0.01 -0.03 -0.07 +0.01 +0.02 +0.03 0 -0.03 

Half-Cauchy -0.01 0 0 -0.01 0 0 0 0 0 

Sum of 
3 uniforms -0.01 +0.01 40.02 +0.02 -0.01 +0.01 0 0 0 
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Table 20. Differences between empirical powers of W and S tests for 
0.' = 0.10 and I = 20 

Distribution 82 812 825 826 813 861 828 840 843 

1—Ï 0 0 0 -0.01 0 0 0 0 0 

"(2) 
-0.01 0 -0.02 -0.04 +0 .01 0 +0 .01 +0.01 -0.01 

*(4) 
-0.02 -0.02 -0.06 -0.11 -0 .01 • ' -0.02 -0 .03 -0.06 -0.09 

2 
(10) 

-0.03 -0.02 -0.05 -0.07 0 -0.02 -0 .02 -0.05 -0.07 

Non- 2 
cent. 0 -0.01 -0.05 -0.05 0 -0.01 -0 .01 -0.02 -0.02 

Log normal -0.01 -0.01 -O.CB -0.03 0 -0.01 0 -0.01 -0.02 

Cauchy +0.02 -0.01 -0.04 

0
 

0
 

1 0 -0.02 -0, .02 -0.02 -0.02 

Uniform -0.12 +0.04 +0.12 X̂15 -0, .01 +0.07 +0, .04 +0.01 +0.04 

Logistic +0.03 -0.03 -0.07 -0.08 +0, .01 -0.02 +0, .01 +0.01 +0.01 

Beta (2, 1) -0.07 0 %̂02 +0.01 +0. .01 +0.02 +0, .02 +0.02 +0.01 

LaPlace +0.06 -0.04 -0.10 -0.14 —0, .01 -0.05 -0. .02 -0. o4 -0.05 

poisson 0 0 0 0 0 0 0 -0.03 -0.08 

Binomial -0.02 +0.05 +0.05 +0.06 -0. ,08 -0.05 -0. .16 -0.31 -0.37 

T(5, 2.4) -0.10 +0.01 +0.03 +0.04 +0, ,01 +0.05 +0. ,04 +0.05 +0.05 

T(10, 3.1) -0.03 0 0 -0.02 0 +0.01 +0. ,01 +0.01 0 

Half-normal -0.05 -0.02 -0.04 -0.06 +0. ,01 +0.01 +0. 02 0 -0.02 

Half-Caucby 0 0 0 0 0 0 0 +0.01 0 

Sum of 
3 uniforms -0.02 0 0 0 -0. 01 0 -0. 01 -0.02 -0.02 

Table 21. Differences between empirical powers of W and S tests for 
a = 0.03 and I = 50 

Distribution S2 812 82$ 826 S13 S6l 828 8^0 S43 

Binomial 0 0 0 0 0 0 0 -0.65 -0.77 

Uniform -O.3O -0.04 +0.01 +0.04 -0.11 ' 0 -0.04 -O.O3 +0.02 

Cauchy 0 +0.01 0 0 0 0 0 -0.01 -0.01 



www.manaraa.com

Table 21 (Continued) 

180 

Distribution EU2 82$ 826 813 EWSl 828 S40 84] 

Half-normal -0.0$ -0.01 -0.04 -0.10 -0.01 0 0 -0.02 -O.O8 

Logistic -+0.10 +0.03 -0.04 -0,06 40.09 +0.0$ 40.08 +O.O9 +0.0? 

Table 22. Differences between empirical powers of W and S tests for 
a = 0,05 and I = 50 

Distribution 82 812 825 826 813 S6l 828 840 843 

Binomial 0 0 0 0 0 0 0 -O.5I -0.62 

Uniform -0.22 -0.05 0 +0.03 -O.O8 0 -0.02 -O.O3 +0.01 

Cauchy 4 0 . 0  0  0  0  0  0  0  - 0 . 0 1  

Half-normal -O.O3 -0.01 -0.02 -0.05 0 +0.01 +0.01 -0.01 -0.03 

Logistic +0.14 +0.05 -0.02 -O.O5 +0.11 +O.O8 +0.10 +0.10 +O.O8 

Table 23. Differences between empirical pawers of W and S tests for 
Q' = 0.10 and I = 50 

Distribution 82 812 825 826 813 861 828 840 843 

Binomial 0 0 0 0 0 0 0 0 -0.17 -0.32 

Uniform -0. ̂15 

LT
N 0

 
0

 1 -0. 02 -0.01 -0.0? -0, .02 -0.04 -0.02 0 

Cauchy 0 0 0 0 0 -0, .01 -0.01 -0.01 -0.01 

Half-normal -0. 02 -0.01 -0. 01 -0.02 0 0 0 0 -0.01 

Logistic +0. ,12 +0.07 +0. 01 -0.03 +0.11 +0, .08 +0.09 +0.08 +0.07 



www.manaraa.com

i8L 

Table 2k. Sixiffinary of differences between empirical powers of the 
W and 3 tests 

82 812 825 826 813 86l 828 S40 84] 

S'oiu of 
differences -I.56 +0.43 -0.62 -1.97 -0.03 +0.57 +O.38 -2.6? -4.01 

Maximum 
positive 
difference +0.14 +0.13 +0.14 +O.I7 +0.11 +0.11 +0.10 +0.09 +O.O8 

]yfe,xinium 
negative 
difference -O.3O -O.O6 -O.I3 -0.19 -0.11 -O.O5 -O.I6 -O.65 -O.77 

The values of the S statistics S6l, 812, 828, and 813 for a = O.O3, 

0.05: and 0.10 and sample sizes of 10, 20 and 50 are shown in Table 25. 

A difference in methods of application should be noted. For the W test, 

the null hypothesis should be rejected if the computed W less than 

the table For the S tests, the null hypothesis should be rejected 

if the computed S is greater than the table 8 The S test procedure is: 
0,1 . 

1. Ho: a) 

2. Select a and sample size, I. 

3. Draw sample and arrange observed values in ascending order. 

4. Obtain standard deviates of the normal distribution from a table 

and arrange in ascending order (the continuity correction used in 

this study was (2̂  - l)/(2l)). 

5. Fit a linear regression line to the paired [X., Y.}. 
I 

6. Compute Y = E Ŷ /i and = a + bX_. 

7. Compute 8** (86I, 812, 828, or 813). 

8. If S** > 8̂  ̂J, reject Ho. 
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Table 25. Values of the S6l, 812, 828, and S13 statistics 

861 812 828 813 

CV = 0.03 0.95348E-2& 0.93992E-1 0.506303-2 0.632033-2 

o
 11 H
 a = 0.05 O.7239IE-2 0.79797E-1 0.393293-2 0.469563-2 

Of = 0.10 O.47298E-2 0.609302-1 0.248873-2 0.304993-2 

a = 0.03 O.I+J+25IE-2 O.68788E-I 0.20886E-2 0.25467E-2 

O
 

CM II H
 a = 0.05 O.34118E-2 0.5^9363-1 0.154773-2 0.182483-2 

a = 0.10 0.21474E-2 0.40838E-I 0.100393-2 0.10967E-2 

cy = 0.03 0.17546E-2 0.370983-1 0.82U31E-3 0.642933-3 

O
 

u
>

 II H
 a = 0.05 0.11906E-2 0.313693-1 0.563863-3 0.47066E-3 

a = 0.10 0.758363-3 0.221203-1 0.346973-3 0.284353-3 

T̂he number "before E is to "be multiplied by a factor of ten raised to 
the power of the algebraic number after E. 

The results of the final simulation runs indicate : 

1. The s6lj 812, 828, and 813 tests appear to be the "best" of the 

S type tests. 

2. The empirical powers of the s6lj 812, 828, and 813 tests are 

comparable to the empirical powers of the W tests. 

The criterion used in selecting the best of the S tests was the total sum 

of the differences between the empirical powers of the W and the S tests. 

An additional criterion was to minimize the maximum negative differences 

between the powers of the W and S tests. 
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